What underlies the emergent agility of hawkmoth flower tracking

One aspect of flight agility of hawkmoth M. sexta is that it sustains long bouts of hovering mid-air while feeding from wind-blowing flowers. Interestingly, this flower tracking phenomenon turns out to be linear i.e. it emerges as a linear relationship between flower and moth positions for a range of speeds close to the hover-feeding equilibrium […]

Continue reading


Temporal encoding across a motor program for the hawkmoth’s agile flight

Animals perform a plethora of robust, agile movements in natural environments by actuating and coordinating many muscles. However, the nervous system has a limited set of signals—action potentials in motor neurons—to control and execute these movements. Hawk moths use an especially sparse set of motor commands, with only 10 muscles controlling all wing movements, and […]

Continue reading


within-wingstroke body motion affect on insect flight dynamics

Current quasi-steady models of insect flight often prescribe constant body dynamics during a wingstroke. However, many silkmoths and butterflies experience large fluctuations in body kinematics even during a single wingstroke. We know that silkmoths use larger, slower wingstrokes than their cousin hawkmoths, which are common models for insect flight. But how do silkmoth’s morphology and […]

Continue reading


The evolution of different strategies for agile flight

A wide diversity of wing shapes has evolved, but how is aerodynamic strategy coupled to morphological variation? Here we examine how wing shape has evolved across a phylogenetic split between hawkmoths (Sphingidae) and wild silkmoths (Saturniidae), which have divergent life histories, but agile flight behaviors. We use measurements of both wing morphology and movement to […]

Continue reading


Natural flower wakes present aerodynamic challenges to pollinators

Plants and their pollinators must interact with changing airflow while simultaneously interacting as individual organisms. For flying pollinators, this includes flight through gusts and performing complex aerial maneuvers. Recent studies have begun to explore how these animals alter behavior in response to unsteady air, but we do not know if these conditions represent the local […]

Continue reading


Centralization of Locomotor Control in Roaches & Robots

Animals such as cockroaches must coordinate the movements of multiple legs, which are coupled components of a complex hybrid-dynamical system, in order to stably run. Coordination could be achieved through a decentralized control architecture, where a motor command for a particular muscle is only informative of the variation of the local states of the limb, […]

Continue reading


Moths change their behavior, but not their aerodynamics to feed in windy environments

Hawkmoths naturally hover and feed from flowers in nature. Insects have developed an assortment of unsteady aerodynamic mechanisms to generate the high-lift necessary for hovering. While feeding, hawkmoths rely on precise wing kinematics to not only remain aloft, but also track the motion of flowers as they sway in the wind. Previous work revealed that […]

Continue reading


Moths slow their brains to track flowers in low light

Hawkmoths, like Manduca sexta, hover and track moving flowers during natural foraging in  low light environments. Neural recordings from the visual part of the moth’s brain have suggested that as light levels drop, the moth changes its sensitivity to light by integrating light for a longer period of time. Such a strategy raises the possibility […]

Continue reading