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Abstract
Convergent and divergent structures in the networks that make up biological brains are
found across many species and brain regions at various spatial scales. Neurons in these
networks fire action potentials, or “spikes,” whose precise timing is becoming increasingly
appreciated as large sources of information about both sensory input and motor output.
In this work, we investigate the extent to which feedforward convergent/divergent network
structure is related to the gain in information of spike timing representations over spike
count representations. While previous theories on coding in convergent and divergent
networks have largely neglected the role of precise spike timing, our model and analy-
ses place this aspect at the forefront. For a suite of stimuli with different timescales, we
demonstrate that structural bottlenecks–small groups of neurons post-synaptic to network
convergence–have a stronger preference for spike timing codes than expansion layers
created by structural divergence. We further show that this relationship can be general-
ized across different spike-generating models and measures of coding capacity, imply-
ing a potentially fundamental link between network structure and coding strategy using
spikes. Additionally, we found that a simple network model based on convergence and
divergence ratios of a hawkmoth (Manduca sexta) nervous system can reproduce the
relative contribution of spike timing information in its motor output, providing testable pre-
dictions on optimal temporal resolutions of spike coding across the moth sensory-motor
pathway at both the single-neuron and population levels.

Author summary
Within the complex anatomy of the brain, there are certain structures that appear more
often than expected. One example of this is when large populations of neurons connect
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to much smaller populations, and vice versa. We refer to these structural patterns as
network convergence and divergence; they are observed in systems like the cerebel-
lum, insect olfactory networks, visuomotor pathways, and the early visual system of
mammals. Despite the ubiquity of this connectivity pattern, we are only beginning
to understand its functional implications from a computational point of view. Here,
we construct and analyze mathematical models of spiking neural networks to under-
stand how convergent and divergent structure shapes the way that information is
represented in each part of the network, as a function of the temporal resolution of
population spiking activity. We then developed a simple feedforward network model of
the visuomotor pathway of a moth, with similar convergent/divergent network struc-
ture, and reproduced a similar proportion of spike timing to spike count information as
observed experimentally. Our results form predictions about spike coding in populations
previously unobserved in experiment.

Introduction
The neural systems of animals comprise networks with highly non-random topological struc-
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ture [1–6]. The relationship between computation and connectivity in neural networks is
multi-faceted and depends on our definition of these terms [7–9,52], but often it can be fruit-
ful to focus on computation in networks with connectivity patterns that are observed more
often in biological systems than would be expected in a totally random model network [4,10–
12,57]. One particular structural motif that is common in many areas of the nervous sys-
tem involves populations of neurons synapsing with other populations of a much different
size. When a large population of neurons synapses with a much smaller population, it may
be called a “convergent” pathway. If a small population synapses with a much larger popula-
tion, we call this structure “divergent.” Structural convergence and divergence are observed
in a wide range of neural systems across species, including the mammalian early visual sys-
tem [13–16], mammalian cerebellum-like structures [17,18] and the insect olfactory sys-
tem [19]. A notable example is the divergence from 200 million mossy fibers to 50 billion
granule cells and then convergence to 15 million Purkinje cells in the human cerebellum –
mostly a feedforward network [20,21].

Despite their ubiquity, convergent/divergent structures are only beginning to be under-
stood from a functional point of view. Previous work has shown that network convergence
synergizes with nonlinear activation functions to boost information coding [13]. Other stud-
ies have focused explicitly on networks with bottlenecks (small groups of neurons pre- and
post-synaptic to much larger groups of neurons on both sides), demonstrating that modu-
lar connectivity increases their information transfer in classification tasks [22], and that they
increase dimension while reducing noise in the expansion layer post-synaptic to them [17].
While highlighting the computational significance of structural convergence and diver-
gence, the network or neuron models used in these studies were non-spiking, neglecting the
biologically-relevant role of precisely-timed action potentials. Instead of directly testing how
feedforward convergence and divergence shape coding strategies of spiking neurons, a recent
study [23] examined the relationship between temporal coding of spiking population and
its size. In this work, time-dependent stimuli were decoded from uncoupled spiking neuron
populations of varying size. It was found that signal reconstruction error drops linearly with
population size when decoded from precisely timed spikes, but sublinearly when decoded
from imprecisely timed spikes. Although this work reveals an interesting relationship between
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spike coding and population size, it is still unclear how convergent and divergent network
structures directly shape the importance of spike timing in information processing.

The demand for understanding the implications of convergent and divergent structure for
the information coding is especially high in light of growing experimental evidence show-
ing that spike timing can encode significantly more information about inputs [24] and out-
puts [25] than spike count. While the importance of spike timing is well established at the
levels of sensory input [26–30] and motor output [25,31–35], it is not as well understood in
the intermediate stages of processing between sensory and motor populations. In the context
of vertebrate and invertebrate visuomotor systems, these pathways involve several cascades
of structural convergence and divergence from the early visual system to cortex [15,16] and
eventually through the cerebellum [18,20,21] to the spinal cord and commanding muscles.
A classic modeling study suggests that the cortex, a large population of neurons post-synaptic
to structural divergence, is more likely to use a population spike count code due to high vari-
ability in inter-spike intervals [36]. Another work argues based on energy expenditure that
rate/count coding can only explain around 15% of the activity in primary visual cortex [37],
suggesting that other coding strategies must explain the rest [38]. From a purely quantita-
tive perspective, single-neuron count codes are slow and information-poor, but robust to
noise [39]. The activity of large populations of neurons following a structural divergence com-
prises a high-dimensional space and may therefore benefit from a collective count code due to
the noise reduction. On the other hand, spike timing codes are fast, efficient, and information-
rich, but potentially sensitive to noise [40]. It is, therefore, possible that bottleneck popula-
tions of neurons post-synaptic to structural convergences may be good candidates for a tem-
poral code, since this would allow them to encode a similar amount of information as the
larger pre-synaptic layer but with a smaller number of neurons. Indeed, experiments testing
white noise optogenetic stimuli in the cortex of mice have shown that temporal precision of
spiking increases in the inter-neurons post-synaptic to a structural convergence compared to
the pyramidal neurons pre-synaptic to them [41]. However, this is just one example, and our
understanding of the information processing between sensory input and motor output would
improve if a relationship between population spike coding and convergent/divergent structure
was also explored theoretically.

Thus, we aim to systematically investigate how convergent/divergent structure are related
to precise spike time coding in spiking neural network models. Our primary hypothesis is that
temporal coding is more beneficial in bottleneck populations post-synaptic to a structural
convergence than it is in an expansion layer. While expansion layers have a surplus of neu-
rons and may represent stimuli equally well with a coarse count code, bottlenecks have fewer
neurons available to encode signals. Therefore, bottlenecks may preserve information by pre-
ferring temporal expressions of signal representations. To test this hypothesis, we train feed-
forward spiking neural networks to autoencode a time-dependent stimulus [38] and perform
decoding analyses [42] on the population spike trains binned at various resolutions. First,
we study 3-layered feedforward networks with varying levels of convergence and divergence
to establish a relationship between structure and spike coding. Next, we develop a 5-layered
model resembling the patterns of expansion and contraction in a hawkmoth visuomotor
pathway, whose output is known to use a spike timing code during hover-feeding and target
tracking [25]. We test if our model, although lacking many biological details present in the
moth, can recapitulate a similar relative proportion of information in spike timing and spike
rate coding as observed in experiment. To confirm that our results are not an exception due to
the specific spiking model or decoder we chose, we also test the robustness of the results using
other models and measures.
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Results
A graphical summary of our approach is shown in Fig 1. We first train a feedforward spik-
ing neural network with a given structure to autoencode a time-dependent stimulus s(t) (left
of Fig 1A), and then decode it using a recurrent neural network into its reconstruction ̂s(t)
(bottom right of Fig 1A). To test how the encoding changes as we increase the temporal res-
olution of the spike trains, we use a decoding analysis in which we process each layer’s spikes
over a sliding window of width T = 50 ms which are further binned at resolution Δt. The
choice of 50 ms for the duration of the response window was motivated by the wingstroke
period of the hawkmothManduca sexta, and it is also consistent with previous neural decod-
ing studies [42]. The binned spikes R(t;Δt) are then fed to a decoder (the recurrent neural
network) that treats the binned spikes within the larger response window as a sequence of
hidden states within its own dynamics. The decoder estimates the stimulus presented to the
input layer of the network with a reconstruction ̂s, based on the binned population spiking of
the layer of interest. We then quantify the relationship between response R(t;Δt) and stimu-
lus s(t) by computing both the decoding accuracy R2 (coefficient of determination) and the
mutual information Im between true stimulus s and decoded stimulus ̂s for various Δt. These
measures approximate the true information carried at the population level and are com-
puted across a range of Δt to establish the temporal resolution of the optimal coding strategy,
referred to here as the “information curves”.

We also perform an information theoretic analysis at the single-neuron level, based on
past work [25,33,48]. The strength of this method is that it quantifies the amount of spike
count and spike timing information without confounding the two variables. Note that the bin-
ning method used in the population analysis considers spike counts over increasing levels
of time resolution and therefore does not isolate spike-timing code completely from spike-
count code. The strength of this method is that it considers all neurons in the layer and thus
quantifies its population coding strategy, not just single-neuron coding. Computing mutual
information at the single-cell resolution allows us to compare our model’s results with previ-
ously obtained experimental results at the single neuron level. For a detailed explanation of
our model and analysis, see Methods.

Three-layer network
We first focus on a feedforward network of 3 layers, systematically varying the number of neu-
rons in the middle (hidden) layer Nh while keeping the number of neurons in the input and
output layer fixed at Nin =Nout = 100. By doing this, we simultaneously tune the level of struc-
tural divergence and convergence. The network model consists of leaky integrate-and-fire
neurons with both excitatory and inhibitory synapses. The parameters of the network, includ-
ing synaptic weights, membrane time constants, and readout weights (mentioned below) are
optimized to minimize the following loss function

LMSE(z, s) =
1
Nt

Nt

∑
t=1
(zt – st)2 (1)

where Nt is the total number of time points, st is the true stimulus at time t, and z is a readout
from the output layer of the form

z = 𝛾ztime + (1 – 𝛾)zcount (2)
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Fig 1. Schematic of model and analysis methods. (A) Raster plot of 3-layer network model trained to a 4 Hz + 20 Hz sum of sines stimulus. Red and blue indi-
cate the x- and y-components for both the stimulus and readout (left). Depiction of the procedure used to process population spike trains before feeding them to
the decoder to estimate the stimulus (right). T = 50 ms is the width of the sliding window used here and Δt is the bin size (B) Sketch of the information theoretic
method used to validate the 5-layer network model against previous results from hawkmoth data. A window of duration T = 50 ms is used in this analysis. The
variable Rc denotes the spike count response and Rt denotes the spike timing response.

https://doi.org/10.1371/journal.pcbi.1012971.g001

where ztime is a readout based on the spike timings of the output layer and zcount is a readout
based on the spike counts of the output layer. The quantity 𝛾 is a hyperparameter that we set
to 0.5, so as to equally weigh the readouts based on spike count and spike timing, thus not
biasing our results (for more details, see Methods).

After training the network, we decode the stimulus from each layer by using the popula-
tion spikes binned at various time resolutions Δt using two types of recurrent neural networks
(see Decoding analysis methods). Membrane time constants are around 5 ms and there are no
synaptic delays in our network model, so spikes binned in a given T = 50 ms time window are
most likely to be caused by other spikes in the same time window. The association between
the true stimulus s and decoded stimulus ̂s is estimated using various measures, including
the mutual information Im(s, ̂s). Since the decoded stimulus is a function of the response (i.e.
̂s = f(r)), the data-processing inequality states that Im(s, ̂s)≤ Im(s, r). Thus, when we quantify
how associated s and ̂s are, we are computing a lower bound on the true association between
stimulus s and response r. Note that the estimated stimulus ̂s from each layer and the net-
work readout z are separate quantities: the former is constructed by binning population spike
trains at various Δt’s and feeding them to the decoder while the latter is purely a mechanism
by which we train the network, thus increasing the information in the deeper layers before
performing the decoding analysis which forms the ̂s’s.

For a variety of stimuli, we demonstrate how this information changes in each layer as a
function of the network structure and timescale of spike counting Δt. When Δt is equal to
the duration of the response window T, the input to our decoder is a vector of spike counts
across each neuron. When Δt = 1 ms (1 ms is the time step of our simulations), the input to
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the decoder is matrix of 1’s and 0’s indicating when spikes occurred at each time step, across
all neurons in the population. Due to the loss in dimensionality of the neural representa-
tion implied by network convergence, we hypothesize that a temporal code (high informa-
tion at small Δt but low information at high Δt) will be especially beneficial in bottlenecks.
Conversely, large populations post-synaptic to network divergence should have less to gain
from temporal codes, since they have high-dimensional representations even with a count or
rate code (high information across all Δt’s).

We first sought to test deterministic stimuli with fixed and well-defined frequency content,
opting for sinusoidal stimuli of various frequency. We start with analyses of the optimal tem-
poral resolution of codes at the output layer. Although we always expect a decrease in infor-
mation with decreasing temporal resolution (larger bin size Δt), different layers of the net-
work receiving varying ratios of convergent and divergent feedforward signals will have dif-
ferent rates of information degradation with respect to increasing Δt. Those layers with very
steep slopes encode information with precisely timed spike codes whereas those with shallow
slopes encode information with a coarser spike count code. In Fig 2, the information in the
output layer has a steeper decline with growing Δt in the case of the expansion hidden layer
structure, as opposed to the bottleneck hidden layer structure, especially at higher stimulus
frequencies. This is shown for a wide range of stimulus frequencies fhigh in Fig 2C, where the
slope of the information curves is plotted as a function of fhigh. There is a general decrease in
the slopes with increasing stimulus frequency for both bottleneck and expansion networks,
owing to progressively better encoding of faster stimuli by spikes binned at higher temporal
resolution. Additionally, for all frequencies fhigh > 20 Hz tested, the slope distributions are sig-
nificantly lower in the expansion hidden layer structure (where signals converge onto the out-
put layer) than the bottleneck hidden layer structure (signals diverge onto output layer). This
demonstrates that structural convergence is more associated with precise spike timing codes
than structural divergence, where information is relatively more preserved at coarser tem-
poral resolutions. To ensure that this result did not depend on our specific choices, we tested
different decoders and spiking neuron models in S1 and S2 Figs and found the same result.

For the same networks tested in Fig 2, we also performed a decoding analysis on the hid-
den layer for the case when flow = 4 Hz and fhigh = 20 Hz in Fig 3. As a visual representation
of how more precise temporal codes are associated with bottleneck populations of neurons,
stimulus reconstructions are shown for Nh = 10 and Nh = 1000 in Fig 3A from spike trains
binned at Δt = 5 ms and Δt = 50 ms. In the case of an expansion hidden layer Nh = 1000, there
is little difference between Δt = 5 ms and Δt = 50 ms; the drop in decoding accuracy when
going from a more precise temporal code Δt = 5 ms to a less precise code Δt = 50 ms is only
ΔR2 = 0.078 (see right side of Fig 3B). However, when decoding from the hidden layer of the
bottleneck network Nh = 10, there is a large drop in decoding accuracy when going from a
more precise code (Δt = 5 ms) to a less precise code (Δt = 50 ms). From Fig 3A, it is clear that
the drop in accuracy comes from the fact that the Nh = 10, Δt = 50 ms reconstruction misses
the faster 20 Hz frequency component while the other reconstructions do not. By having a
higher dimensional representation of the input, the Nh = 1000 expansion layer can still encode
these higher frequency components even with a less precise code, binned over a time win-
dow equal to the period of the faster stimulus component. We again tested this result for an
alternative spiking model, decoder, and association metric, finding the same general trend in
S3–S6 Figs.

To explicitly show that the higher-frequency component fhigh = 20 Hz contributes to the
drop in decoding accuracy for Nh = 10 at Δt = 50 ms in Fig 3, we decode the low frequency
component flow = 4 Hz separately from the high frequency component fhigh = 20 Hz in Fig 4
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Fig 2. Structural convergence to the output layer promotes timing codes across stimulus frequencies. (A) Stimuli are sums of sines with fixed frequency
component flow = 4 Hz and variable component fhigh (B) Decoding accuracy based on output layer spikes binned at time resolution Δt. The blue points show
the fhigh = 50 Hz result for the network with Nh = 1000 hidden neurons and the red points for the network with Nh = 10 hidden neurons. Lines are the best line
fit, averaged over all network simulations. The slopes of these fits are plotted in C and E. (C) Slope of R2 v.s. Δt fits as a function of the high frequency stimulus
component fhigh. Asterisks denote where a one-sided Wilcoxon rank-sum test is significant at p<0.05. (D) Mutual information rate Rinfo = Im(s, ̂s)/T based on the
output layer spikes binned at time resolution Δt. (E) Slope of Rinfo v.s. Δt curves as a function of fhigh, the high frequency stimulus component. Asterisks denote
where a one-sided rank-sum test is significant at p<0.05. Error bars represent distributions of the results over 10 independent network simulations.

https://doi.org/10.1371/journal.pcbi.1012971.g002
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Fig 3. Bottlenecks have more to gain from temporal codes than expansion layers. (A) Example reconstructions from the hidden layer spikes binned at Δt = 5
ms (left) and Δt = 50 ms (right) resolution for Nh = 10 (top) and Nh = 1000 (bottom). Thin traces show reconstructions from individual network seeds. Thick
colored traces show means across all network seeds. (B) Decoding accuracy from the hidden layer spikes as a function of bin size Δt for the bottleneck (left) and
expansion (right) network. Gray points denote which bin sizes were used to compute accuracy gain ΔR2. Error bars denote standard errors of the mean over
network seed distributions. (C) Accuracy gain of the temporal code over count code when reconstructing the stimulus based on spikes from the hidden layer, for
bottleneck (red) and expansion (blue) networks. One-sided Wilcoxon rank-sum test p < 6 × 10–10. Results are shown for 25 independent network simulations.

https://doi.org/10.1371/journal.pcbi.1012971.g003

for all layers of the bottleneck and expansion networks. At the input layer (left), both the bot-
tleneck and the expansion networks have a very similar dependence of decoding accuracy
R2 on bin size Δt for a given frequency component. When decoding from the hidden layer of
either the bottleneck or expansion network, the decoding accuracy of the 4 Hz component
remains constant for all Δt’s. However, there is a large discrepancy between the bottleneck and
expansion networks when decoding the 20 Hz component from the hidden layer: the bottle-
neck has a steep decrease in decoding accuracy with increasing Δt while the expansion shows
a much slower decrease in R2 with increasing Δt. Furthermore, going from the hidden layer to
the output layer steepens the 20 Hz curve for the network with an expansion hidden layer, but
leaves the 20 Hz curve for the network with a bottleneck hidden layer virtually unchanged.
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Fig 4. Temporal codes capture high-frequency stimulus components more accurately in layers following structural convergence. Decoding accuracy versus
bin size for each layer of the bottleneck and expansion networks receiving a 4 Hz + 20 Hz sum of sines stimulus. The 4 Hz (top) and 20 Hz (bottom) components
are decoded separately here. Error bars represent standard errors of the mean over 10 independent network seeds.

https://doi.org/10.1371/journal.pcbi.1012971.g004

These results support the conclusion that populations post-synaptic to a network convergence
encode high-frequency stimulus information with spike codes of high temporal resolution.
Populations post-synaptic to structural divergence maintain similar information curves as
their pre-synaptic layer, indicating that either spike count or spike timing codes are feasible
for divergent populations. The analysis with mutual information is in S7 Fig.

In the previous results, all stimuli used were sums of 2 sines. In Figs 5 and S8, we show
accuracy gains in the hidden and output layer for four different stimuli. For a slow (5 Hz),
continuous single sine stimulus (top of S8 Fig), there is little to be gained from a more pre-
cise temporal code. For the other stimuli shown, which all include some sort of faster time
scale or unpredictability, the hidden layer has a higher accuracy gain in a bottleneck network
than a uniformly structured (Nh = 100) or expansion-compression (Nh = 1000) network. For
the white noise and binary stimuli, the output layer has significantly higher accuracy gains
in the expansion-hidden-layer network (Nh = 1000) than in the networks without structural
convergence onto the output layer. Together, these results demonstrate that structural con-
vergence promotes temporal coding in networks responding to stimuli with fast timescales or
unpredictability. For slow stimuli without fast jumps, there is little, if anything, to be gained
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Fig 5. Stimulus-dependence of spike coding as shaped by convergent/divergent structure. (A) Each row shows the stimulus used for the corresponding plots
on the right. Filtered white noise was used instead of pure white noise since much of the variation in pure white noise is low-pass filtered by the membrane volt-
age of the neurons. (B) Decoding accuracy v.s. the number of hidden neurons at Δt = 5 ms and Δt = 50 ms for the hidden layer (left) and output layer (right). (C)
Accuracy gain (R2 at Δt = 5 ms minus R2 at Δt = 50 ms) v.s number of hidden neurons. Asterisks denote where a one-sided Wilcoxon rank sums test is significant
(* for p<0.05, ** for p<0.01, and *** for p<0.001). All boxplots represent distributions of the results over 25 independent network simulations. For the filtered
white noise stimulus, the mean drop in accuracy gain for the hidden layer when going from Nh = 10 to Nh = 1000 is 0.14; the mean drop in accuracy gain for the
output layer when going from Nh = 1000 to Nh = 10 is 0.04. For the binary stimulus, the accuracy gain drop is 0.04 for the hidden layer and 0.06 for the output
layer.

https://doi.org/10.1371/journal.pcbi.1012971.g005

from a temporal code for all network structures tested. The analysis with mutual information
is shown in S9 Fig.

Five-layer network model of the moth visuomotor pathway
Now that a relationship between optimal coding strategy with spikes and convergent/divergent
structure has been established in a simple 3-layer model, we next test our model-based con-
clusion on this relationship in a specific biological model of a convergent/divergent neural
network found in nature. Specifically, we focus on the visuomotor pathway of the hawkmoth
Manduca sexta for its convergent/divergent architecture along the signal pathway and relative
behavioral simplicity during flower tracking [79]. The output of this system primarily consists
of only 10 muscles that control wing motion, each acting effectively as a single motor unit or
output channel. This compact set of muscles, recorded with spike-level resolution, encode the
majority of the information about motor output in their spike timing [25,49].

The output layer of the hawkmoth visumotor pathway provides a nearly complete motor
program for behavior allowing for the near perfect (>99%) reconstruction of behavioral out-
put states [50] and between 85% and 95% reconstruction on the continuous 6 degree of free-
dom (DoF) body forces and torques [51,90]. The input layer corresponds to the visual system,
which we have here simplified as a group of 48 motion-sensitive neurons [24] separated into
two subpopulations, each tuned to a direction along a line. Intermediate layers of the moth’s
visuomotor pathway include the brain, the neck connective, and the thoracic motor circuits
that drive wing muscles. Structurally speaking, each of these populations corresponds respec-
tively to an expansion (from 105 to 106 neurons), a bottleneck (big convergence from 106 to
103 neurons), and another expansion (from 103 to 104 neurons) before finally converging
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(from 104 to 101 neurons) at the output layer. For a schematic diagram of the moth’s visuomo-
tor pathway and our corresponding model network, see Fig 6. The size of each neural popu-
lation in the model network was chosen to preserve the relative order of magnitude of diver-
gence and convergence observed in the moth, within computational capacity. This is a very
coarse representation of the real network. Of course many brain regions are not involved in
the process of target tracking but the optic lobe and premotor regions capture a very large
portion of the brain of moths and other insects [75–78].

Our first objective with the 5-layer network was to validate it against previous findings
from the motor program of the hawkmoth. Although the real hawkmoth visuomotor path-
way contains recurrent, within-layer connections which have been shown to affect the cod-
ing of neuronal populations [44,45], here we focus on testing whether the feedforward pat-
tern of convergence/divergence is sufficient to reproduce experimental results. In particu-
lar, Putney et al [25] performed experiments where hawkmoths were shown a robotic flower
oscillating horizontally at 1 Hz, a stimulus that they are naturally inclined to track when for-
aging. During the flower tracking, the 10 muscles coordinating their flight were recorded
with spike timing resolution down to 0.1 ms. The authors found that a significant majority of
the mutual information between the spiking activity of these muscles and the motor output
(forces/torques generated during flight) was encoded by spike timing instead of spike count
in each unit. In fact, spike timing encoded three times more information than spike count.
Subsequent analysis showed that the precision of the spike timing code was of the order of 1
ms across all output units [49].

We re-analyzed their data from moth motor units to first confirm this result, shown in
Fig 7C. Next, we trained our 5-layer network model to autoencode the same 1 Hz stimu-
lus that was used during the experiment and performed the same single-neuron informa-
tion theoretic analysis for all layers of the model. Since there is no “motor output” from our
model, we computed the mutual information between the stimulus and the response, which is
analogous to the mutual information between motor output and response in a setting where
the stimulus is being physically tracked. The results are shown in Fig 7. In particular, a large

Fig 6. Experimental system and network model Diagram of the central nervous system of the hawkmothManduca sexta and a schematic of the 5-layered spik-
ing neural network developed here to model its visuomotor pathway. Numbers in parentheses denote the number of neurons in each population for the moth
(orders of magnitude, left) and the model (exact, right).

https://doi.org/10.1371/journal.pcbi.1012971.g006
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Fig 7. Single-neuron information during 1 Hz stimulus. (A) Raster plot of the 5-layer network model trained to a 1 Hz sinusoidal
stimulus. (B) Single neuron information rate in each layer, decomposed into spike count and spike timing contributions. Each dot

https://doi.org/10.1371/journal.pcbi.1012971.g007
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Fig 7. (Continued). represents the result of a single network seed, averaged across all neurons in the layer. Lines
connect the means of the distributions. (C) Mutual information in spike count and spike timing from the hawk-
moth motor program (top) and the 10 neurons in the output layer of the model (bottom). The plots on the right
show mutual information pooled from the output muscles (top) and output layer of the model (bottom). Asterisks
denote where a one-sided Wilcoxon rank sums test is significant at p<0.01. For the model, mutual info Im(s,R) is
taken between stimulus and response; for the moth data, mutual info Im(m,R) is taken between motor outputm
and response. The single-neuron method depicted in Fig 1B and described in Methods was used here to compute
mutual information, consistent with ref. [25], which is where the moth data was originally published. For the moth
muscle results, boxplots represent distributions over 7 individual moths. For the model results, boxplots represent
distributions over 25 independent network simulations.

https://doi.org/10.1371/journal.pcbi.1012971.g007

majority of the mutual information in the output layer of our model is encoded by spike tim-
ing (bottom of Fig 7C), just as found from the experimental data (top of Fig 7C). Further-
more, we show the single-neuron information rate averaged across all neurons within a layer
in Fig 7B. The spike count information is low in all layers compared to the spike timing infor-
mation. The single-neuron spike timing information starts low in the input layer, rises in
the first expansion (E1) layer, falls in the bottleneck (B), rises slightly in the second expan-
sion (E2) and again in the output layer. In the output layer, the spike timing information rate
exceeds the spike count information rate by a much larger amount than it does in the input
layer. On first glance these results seem contradictory to the previous analyses associating
divergence with spike count codes and convergence with spike timing codes. The reason that
the trend is different here is because we are analyzing the coding strategy of single neurons,
averaged across the whole population. The previous analyses characterize the coding strat-
egy of the population, which we show in S10 Fig for the 5-layer network receiving a 1 Hz
stimulus where the stimulus is decoded almost perfectly (R2 ≈ 1) in all layers at all timescales
Δt. Note also that the information theoretic method used in this analysis is conservative in
the sense that contributions from spike timing are only taken once those from spike count
have been completely accounted for. We verified that our single-neuron mutual informa-
tion estimates from the output layer were robust to choice of hyperparameter and amount
of data points in S11–S13 Figs. Overall, our result lends evidence to the notion that conver-
gent/divergent structure in the hawkmoth visuomotor pathway supports a transformation
from the input layer where spike timing is less important to the output layer where spike tim-
ing provides an order of magnitude more information than spike count. Furthermore, when
interpreted in light of the population decoding analysis showing perfect reconstruction across
all Δt’s in all layers (S10 Fig), the single-neuron analysis shown in Fig 7B indicates that there is
a high amount of redundancy in the large expansion layers. We also confirmed that pairwise
redundancy in the output layer of the model is mostly contained in spike timing, not spike
count (S14 Fig), which was another key result of ref [25] demonstrating that coordination in
hawkmoth hovering is achieved through spike timing and not spike count.

Since the 1 Hz sinusoid was decoded very well in all layers and at all time scales (see S10
Fig), we sought to investigate what coding strategy was optimal during a more complex and
biologically-relevant stimulus. Specifically, we were interested in the idea that the bottleneck
may filter the noise in some way. To answer this, we trained the 5-layer network on a noise-
less 4 Hz + 20 Hz sum of sines stimulus. Its input was a version of the same stimulus but with
white noise added. In each layer, we decoded the noiseless stimulus from population spikes
binned at various Δt’s, the results for which are shown in Fig 8. We found that both expansion
layers have a broader range of Δt’s over which nearly perfect decoding accuracy is achieved
than the smaller layers. This was quantified by computing the slope of the best line fits to
the R2 v.s. Δt curves shown on the top of Fig 8B. The distributions of these slopes for each
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Fig 8. Decoding analysis of a noisy 4 Hz + 20 Hz stimulus (A) The 5-layer network receives a sum of sines corrupted by noise, but is trained to encode the
noiseless version at the output. The decoding is done with respect to the noiseless stimulus. (B) Decoding accuracy from spikes binned at resolution Δt, in each
layer of the 5-layer model. Each gray trace represents an individual network seed. Black traces are the means across all network seeds (top). Distribution of slopes
of best line fits to the R2 v.s. Δt curves (bottom). (C) Slope distributions versus layer. Results are shown for 25 independent network simulations.

https://doi.org/10.1371/journal.pcbi.1012971.g008

layer are shown in the bottom of Fig 8B, and also explicitly against layer in Fig 8C. A slope of
zero means that there is no preference for spike count or spike timing. A negative slope indi-
cates that there is a gain in information with a spike timing strategy over a spike count cod-
ing strategy. For the noisy sum of sines used here, all of the slopes (except for one outlier in
the E1 layer) were negative. However, the slopes were more negative in the bottleneck and
output layer, supporting the conclusion that precise spike timing codes are more beneficial
in layers following structural convergence than they are in layers post-synaptic to structural
divergence.

Discussion
We observe significant differences in information between spike count and spike timing rep-
resentations as a function of convergent/divergent network structure. Although the stimulus
reconstruction task is relatively low-dimensional, the fact that we are decoding from discrete
spikes and not continuous rates makes this problem more difficult. Nonetheless, we notice
differences in performance between spike count and spike timing representations, even for
large layers. The 3-layer network results show that bottleneck populations of neurons post-
synaptic to a structural convergence have more to gain from precise spike timing codes than
expansion layers, so long as the stimulus being encoded has sufficiently fast dynamics. The
simple 5-layer network model replicating the cascades of convergence and divergence in the
moth sensory-motor pathway can reproduce the relative proportion of spike timing informa-
tion previously measured at the single unit level from the spike resolved motor program of
Manduca sexta. Notably, the amount by which spike timing information exceeds spike count
information at the output layer is higher than that at the input layer. Even without the exten-
sive recurrence and reafferent sensing observed in biological networks, our simple feedfor-
ward model replicates the experimental result at the hawkmoth motor output. This suggests
that the feedforward signal compressions and expansions induced by the structural conver-
gence and divergence can predict the relative information gain obtained by temporal coding,
along the various stages of the hawkmoth visuomotor pathway. Our work goes beyond previ-
ous theoretical studies considering the effects of convergent and divergent structure on infor-
mation processing [13,17,22] by establishing a relationship between this ubiquitous structural
motif and the information encoded by spikes at various time resolutions in its constituent
neurons.
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A related but distinct concept to structural bottlenecks in biological neural networks is that
of the information bottleneck: a variational method for extracting the most relevant infor-
mation that a random variable X has about another random variable Y by finding an opti-
mal compressed representation X̃ [85]. This method optimizes the tradeoff between predic-
tion and compression and has been used to shed light on learning [84] and optimal archi-
tectures [83] in deep neural networks. While the vanilla information bottleneck method is
agnostic to any particular mapping between X̃ and Y, recent work has extended the idea by
finding an X̃ that is specific to the decoder being used for downstream prediction [82], thus
improving generalization in artificial neural networks. A similar variant of the information
bottleneck was applied to neural data from the cells of the retina, showing that predictive
information about future visual inputs can be encoded and compressed by neurons post-
synaptic to the retina [74]. Although the information bottleneck method is useful for under-
standing artificial neural networks [82–84] and neural data [74], its potential mapping to the
discussion of structural bottlenecks in biological neural networks is unclear. Whereas infor-
mation bottlenecks are optimal compressions in an abstract sense, the structural bottleneck
studied here is a feature of networks widely observed in biology that we treat as a starting
point and study its consequences for information-processing.

Network convergence and divergence are widespread in species and brain areas [14–16,18,
19], but the implication of this structure for spike coding of time-dependent stimuli has not
been well characterized. While the importance of spike timing at both sensory input [26–30]
and motor output [31–35] is well established, its role in the intermediate processing stages
resulting from structural convergence and divergence has been less clear [36,37,87,91]. Our
results demonstrate that bottlenecks would benefit greatly from a more temporally-resolved
spike code, more so than in expansion layers which have a plethora of neurons to represent a
signal with spike counts. This finding is relevant to a variety of systems where cascades of net-
work convergence and divergence are present, including visuomotor pathways, cerebellum-
like structures, the early visual system, and olfactory systems [13,16–18]. Additionally, the
nervous systems of segmented organisms contain neural ganglia which are often coupled by
fewer fibers than they comprise, resulting in a convergent/divergent connectivity pattern that
is another good candidate system to further explore temporal coding [86]. Conversely, there
also exist cases of extremely precise temporal coding in interneuons of bat [47] and owl [46]
that may be interpreted in the context of the present work as potential bottlenecks. High tem-
poral precision in the sensory neurons of mice has also been found [43] and it will be inter-
esting for future work to investigate the minimum temporal resolution needed to preserve
information in large neuronal populations that these sensory neurons diverge onto, i.e. barrel
cortex.

Recent theoretical work with groups of uncoupled Poisson neurons is consistent with our
finding that larger populations of neurons can encode time-dependent signals well with a
count code, whereas small populations must use precisely-timed spikes to achieve the same
decoding accuracy [23]. Here we show that this trend extends to feedforward networks with
convergent/divergent structure where the number of neurons pre-synaptic to a given pop-
ulation shapes the coding strategy of that population, even when the size of that popula-
tion is fixed (as in Fig 2). Additionally, while our decoder is a nonlinear function (a recur-
rent neural network) trained on discrete sequences of population spiking, the decoder used
in ref. [23] is a linear function of spikes convolved with an exponential filter of width 10 ms.
Thus, our method accounts for sequences of population spike trains extended in time whereas
the method used in ref. [23] decodes a continuous signal from a continuous representation
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of a spike train over a short time. Our technique is more consistent with emerging defini-
tions of spike timing codes in which longer sequences of spikes are critical for encoding infor-
mation [24,25,73,80]. In order to obtain elegant analytical results, the authors of ref. [23]
assumed that their neural populations were not correlated with the signal being decoded,
whereas the networks in our computational study explicitly encode the stimulus in the input
layer and are trained to encode it at the output layer.

Whether our findings could be recapitulated in alternative learning models is an open
question. Although artificial neural network (ANN) models can predict precise spike tim-
ing from biologically-relevant stimuli [90], they are unable to make predictions for the role of
spike timing in intermediate layers since their units do not have a spiking mechanism. Indeed,
this frontier is where past work has delivered mixed results [36,37,91] and was important
for us to test. Other approaches like the “chronotron” [88] and “tempotron” [89] are single-
neuron models that learn to classify inputs with distinct spike timing patterns. However, a
training method such as this, although useful in other contexts, would bias the coding strat-
egy toward spike timing, which is undesirable when interested in isolating the effect of net-
work structure on coding in a study like ours. For this reason, we chose to train our network
in a way that was agnostic to the coding strategy at the output (see eq. (2)), a notable strength
of our approach.

There are many models of spike-generating mechanisms for the design of SNNs and these
may promote different coding and network features. For example, the dynamics of resonant-
and-fire neurons [55] and their generalizations [54] are selective for stimuli of certain fre-
quencies. This could be especially important in the context of spike timing codes, since pat-
terns of pre-synaptic spikes with a steady firing rate equal to the natural frequency of the
post-synaptic neuron will produce post-synaptic spikes with higher probability than other
pre-synaptic firing rates [53]. This is in contrast to leaky-integrate-and-fire (LIF) neurons,
which are most likely to spike when the input amplitude is high and the frequency is low [53].
Although we tested models only within the LIF family, this particular model in its general-
ized form has been shown to reproduce a variety of experimentally measured neuronal spik-
ing behaviors [56]. Thus, we expect that the general trends we observe in the two LIF models
tested here will extend to other spike-generating mechanisms.

In summary, we found that convergent and divergent structure shapes the way in which
populations of neurons encode high-frequency or less predictable dynamic stimulus infor-
mation with precisely-timed spikes. Structural bottlenecks resulting from network conver-
gence benefit much greater from precise spike timing than expansion layers coming from net-
work divergence. A simple model recapitulates previous experimental findings at the motor
output of the visuomotor pathway of the hawkmoth. While comprehensive experimental
data across all layers of the hawkmoth visuomotor pathway is unavailable, our model further
makes predictions about unobserved populations and untested stimuli, which could be con-
firmed experimentally in future studies. In particular, our single-neuron analyses Fig 7 predict
high amounts of redundancy in the spike timing representation of simple visual stimuli by the
populations comprising the brain and thoracic circuits of the hawkmoth. From our popula-
tion decoding analyses Figs 8 and S10, we predict that precise spike timing representations
for accurate tracking of fast stimuli are needed in the bottlenecks of the hawkmoth visuo-
motor pathway (neck connective and motor neurons) but provide only marginal gains over
spike count codes in the expansion layers (the brain and thoracic circuits). Overall, our work
establishes a novel structure-function relationship in feedforward neural networks with sig-
nal convergence and divergence, elucidating how this structural motif prevalent across neural
systems and species determines the optimal coding strategy with spikes.
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Methods
Analytical support for spike timing and count codes
In this section, we present an analytical explanation for why network convergence promotes
timing-based codes, demonstrating that count-based coding requires more neurons to achieve
the same entropy upper bound as timing-based coding.

Single-neuron example Consider the example where the response window is of dura-
tion T ms and the refractory period of the neuron is 𝜏ref ms. The total number of bins to place
spikes in would then be nbins = T/𝜏ref. In the case of a spike count code, we may bin spikes at
resolution Δt = Tms. Including the outcome of 0 spikes, the total number of outcomes for
the spike count code is |Sc| = nbins + 1. By assuming each of these outcomes is equally likely,
the probability distribution becomes uniform, i.e. the probability of i spikes is pi = 1/|Sc| for
i = 0, 1,… ,nbins. Using this probability distribution with maximum entropy, we may calculate
an upper bound on the true entropy of the spike count code. Let us refer to the true entropy of
the spike count code as Hc and its upper bound as H̃c. Then we have:

Hc ≤ H̃c (3)

= –∑
i
pilog2pi (4)

= –
nbins
∑
i=0

1
|Sc|

log2
1
|Sc|

(5)

= log2|Sc| (6)
H̃c = log2(nbins + 1) (7)

Similarly, we may bin spikes at resolution Δt = 𝜏ref ms and list the possible spike timings as
binary sequences. The total number of possible outcomes for the spike timing code is equal to
the number of binary sequences of length nbins, which is given by |St| = 2nbins . Again assum-
ing a uniform distribution pi = 1/|St| for each outcome i = 1,… , |St|, the upper bound on the
entropy of the spike timing code is:

Ht ≤ H̃t (8)

= –∑
i
pilog2pi (9)

= –
|St|

∑
i=1

1
|St|

log2
1
|St|

(10)

= log2|St| (11)
= log2(2

nbins) (12)
H̃t = nbins (13)

Therefore, the entropy upper bound for spike count code scales logarithmically with the
duration of the response window whereas that for the spike timing code scales linearly. For
the example when T = 15 ms and 𝜏ref = 5 ms, the number of bins is nbins = T/𝜏ref = 3 and the
maximum entropy rate is H̃t = 3 bits per 15 ms for the spike timing code and H̃c = 2 bits per 15
ms for the spike count code.

Population of neurons Let us now consider spike coding in a population of Nnrn neurons.
In the case of a spike count code, each neuron in the population can fire anywhere between 0
and nbins spikes. Therefore, the total number of outcomes is |Spopc | = (nbins + 1)Nnrn . The upper
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bound of the population spike count code entropy is then:

Hpop
c ≤ H̃pop

c (14)
= log2|S

pop
c | (15)

= log2(nbins + 1)
Nnrn (16)

H̃pop
c =Nnrnlog2(nbins + 1) (17)

For the spike timing code, each neuron in the population can fire one of 2nbins possible
spike sequences. Thus, the total number of possible outcomes for the population spike timing
code is |Spopt | = (2nbins)Nnrn = 2nbinsNnrn . The upper bound of the entropy for the population spike
timing code is:

Hpop
t ≤ H̃pop

t (18)
= log2|S

pop
t | (19)

= log22
nbinsNnrn (20)

H̃pop
t = nbinsNnrn (21)

The entropy upper bounds for both the spike count and spike timing codes grow linearly
with the number of neurons Nnrn but with different slopes. For the spike count code, the slope
is log2(nbins + 1). For the spike timing code, the slope is nbins. The slopes of the entropy upper
bounds of both the spike timing and spike count codes are plotted as a function of nbins in
Fig 9A, where we can see that the spike timing entropy slopes are higher than that of the spike
count at all values of nbins ≥ 1. Furthermore, the gain in entropy of a spike timing over a spike
count code becomes greater as longer spike trains are considered (i.e. nbins is increased). With
the parameter values T = 15 ms, 𝜏ref = 5 ms, we plot the maximum entropy rate H̃/T as a func-
tion of the number of neurons Nnrn in Fig 9B. For Nnrn = 10 neurons, we can see that the spike
timing code achieves an entropy rate of H̃pop

t /T = 2 bits/ms, whereas the spike count code can
only encode H̃pop

c /T = 1.3 bits/ms. This analytical finding is consistent with our main com-
putational Results, showing that spike timing codes increase the computational capacity of
small populations of neurons post-synaptic to a network convergence. To reach the amount of
entropy encoded by a given population employing a spike timing code, but with a spike count
code, the number of neurons in the population should increase.

Spiking neuron models
The Python package snnTorch [38] was used to train and run simulations of the spiking neu-
ral networks (SNNs) studied here. The spiking neuron model that is used for all primary
results is the spike response model or “alpha” neuron. We have also implemented a sim-
ple leaky integrate-and-fire neuron model, to verify that the main results are not model-
dependent. Parameter values used for the alpha neuron model are listed in Table 1 and for the
LIF neuron in Table 2.

The evolution of the alpha neuron is governed by the following difference equations:

Iexc[t + 1] = 𝛼Iexc[t] + Iin[t + 1] (22)
Iinh[t + 1] = 𝛽Iinh[t] – Iin[t + 1] (23)
U[t + 1] = 𝜏𝛼(Iexc[t + 1] + Iinh[t + 1]) (24)
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Fig 9. Maximum entropy of population spike codes. (A) Slope of the entropy v.s. population size curves, as a func-
tion of the number of time bins. The purple curve is simply the linear function y = nbins for the spike timing code
and the teal curve is the function y = log2(nbins + 1) for the spike count code. (B) Example of the entropy rate v.s.
population size for both types of spike code. We set T = 15 ms and 𝜏ref = 5 ms here so that nbins = T/𝜏ref = 3.

https://doi.org/10.1371/journal.pcbi.1012971.g009

Table 1. Parameter values for the neurons in the alpha neuron model.The symbol U(A,B) denotes the uniform
distribution between A and B.
Alpha neuron parameter initializations
Parameter name Symbol Value
Excitatory current decay rate 𝛼 U(0.7, 0.9)
Inhibitory current decay rate 𝛽 𝛼 – 0.1
Reset membrane potential Ureset 0
Threshold membrane potential Uthr U(0, 0.5)

https://doi.org/10.1371/journal.pcbi.1012971.t001

Table 2. Parameter values for the neurons in the LIF neuron model.The symbol U(A,B) denotes the uniform
distribution between A and B.
LIF neuron parameter initializations
Parameter name Symbol Value
Membrane potential decay rate 𝛽 U(0.7, 0.9)
Reset membrane potential Ureset 0
Threshold membrane potential Uthr U(0, 1.1)

https://doi.org/10.1371/journal.pcbi.1012971.t002

where 𝛼 is the decay rate of the excitatory current Iexc and 𝛽 is the decay rate of the inhibitory
current Iinh. The term Iin represents external current, which either comes from a stimulus or
pre-synaptic spiking. The time constant for the membrane potential U is given by 𝜏𝛼 = ln𝛼

ln𝛽 –
ln𝛼 + 1. To ensure that positive inputs increase the membrane potential, we set 𝛼 > 𝛽.

The leaky integrate-and-fire (LIF) neuron is governed by

U[t + 1] = 𝛽U[t] + Iin[t + 1] (25)

where 𝛽 is the decay rate of the membrane potential U and Iin is the input current. For both
the alpha and LIF neuron models, we set U[t + 1] =Ureset whenever the membrane potential
reaches the spiking threshold U[t] >Uthr.

Our network’s input layer is inspired by an insect visual system with a mechanism for
motion direction selectivity in two dimensions in its visual scene [62,96]. We designed the
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input layer of our models to be tuned to various regions of a 2-dimensional plane (the visual
scene). For the ith neuron in the subpopulation of the input layer tuned to quadrant q, the
input it receives is

Iq,iin =
⎧⎪⎪⎨⎪⎪⎩

√
s2x + s2y if (sx – sq,i, sy – sq,i)∈ quadrant q

0 otherwise
(26)

where q = 1, 2, 3, 4 and i = 1,… ,Nin/4. The stimulus s is a time-dependent vector with two
components sx and sy denoting x- and y-positions of a moving object. The total number of
neurons in the input layer is Nin. We generate a set of random offsets sq,i ∼N (0, 0.1) for
each quadrant, independently sampled for each neuron. The purpose of this is to encourage
smooth transitions between firing of the 4 subpopulations, which is more biologically-realistic
than discrete switching.

Network connectivity
To capture critical biological features, our spiking neuron model includes both excitatory and
inhibitory input synapses because of their role in passing on relevant sensory information and
evoking balanced motor responses in the sensorimotor pathway [20].

All layers besides the input layer of our feedforward network models solely receive inputs
from neurons in pre-synaptic layers. The ith neuron in the (k + 1)th layer other than the input
layer receives the input current

Ii,k+1in [t] =
Npre

∑
j=1

Wk,k+1
ij Xk

j [t] (27)

where Npre is the number of neurons in the layer pre-synaptic to neuron i in layer k,Wk,k+1

is the synaptic weight matrix from layer k to layer k + 1, and Xk
j [t] = 1 if pre-synaptic neuron

j in layer k spiked at time t and Xk
j [t] = 0 otherwise. The entries ofWk,k+1 that are non-zero

with probability p are distributed according toWk,k+1
ij ∼N (0, 1/

√
pNpre). Thus, excitatory and

inhibitory connections are equally probable in our model, and may both exist for the same
pre-synaptic neuron and Dale’s law was disregarded for simplification. We set the connection
probability to p = 0.7 for all models.

Network training
The synaptic weights between layers of spiking neurons in our networks are optimized with
backpropagation-thru-time (BPTT) to minimize the following loss function:

LMSE(z, s) =
1
Nt

Nt

∑
t=1
(zt – st)2 (28)

where Nt is the total number of time points, st is the true stimulus at time t, and z is a readout
from the output layer of the form

z = 𝛾ztime + (1 – 𝛾)zcount (29)

where 𝛾 = 0.5 to equally weigh spike count and timing, ztime =Wtimertime and zcount =
Wcountrcount. The matricesWcount ∈ℝNout×ds andWtime ∈ℝNout×ds are read-out weights whose

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012971 April 21, 2025 20/ 29

https://doi.org/10.1371/journal.pcbi.1012971


ID: pcbi.1012971 — 2025/4/24 — page 21 — #21

PLOS COMPUTATIONAL BIOLOGY Temporal resolution of spike coding in networks with signal convergence and divergence

entries are initialized randomly from a normal distributionN (0, 0.1). The symbol ds denotes
the dimensionality of the stimulus dynamics: either ds = 1 for the 5-layer network or ds = 2 for
the 3-layer network. The quantities rtime ∈ℝNt×Nout and rcount ∈ℝNt×Nout are convolutions of
the output layer’s spike trains with two different kernels:

rtime =Ktime ∗ Ρout (30)
rcount =Kcount ∗ Ρout (31)

where ∗ denotes convolution. The binarized population spikes of the output layer Ρout ∈
𝔹Nt×Nout (where 𝔹 = {0, 1}) are convolved with the kernels Ktime and Kcount, which are of the
form

K(t) =
⎧⎪⎪⎨⎪⎪⎩

exp [– (t–Δt/2)
2

𝜎 ] if 0 < t <Δt
0 otherwise

(32)

where Δt = 10 ms for Ktime ∈ℝ10×Nout and Δt = 70 ms for Kcount ∈ℝ70×Nout . We chose Δt = 10
ms as the scale of the timing convolution since only 1-3 spikes typically fall within this win-
dow, and smaller Δt’s resulting in poor training. The value Δt = 70 ms was chosen for the
count convolution since multiple spikes usually fall within this window. Values larger than
Δt = 70 ms for the count convolution resulted in poorer training. The standard deviation is set
to 𝜎 = 0.1 ms2 for both kernels.

The read-out weightsWtime andWcount, as well as the membrane decay rates 𝛼 and 𝛽 and
synaptic weights (see Spiking neuron models) of the spiking neural network, are trained dur-
ing back-propagation to minimize the mean-squared error. A plot of the MSE loss over train-
ing is shown in Fig 10, as well as an example of the read-out compared to the stimulus after
training.

Decoding analysis
In order to determine how the population responses of layers in our network model relate to
stimuli, we trained and tested a decoder [42]. In particular, long short-term memory (LSTM)
and gated recurrent unit (GRU) networks were used to predict the stimulus at time t based on
the neural response during time [t, t + T] binned at resolution Δt. In other words, the stim-
ulus value at the beginning of the spike train is the value we use the spike train to decode.
To further clarify this process, suppose a neural recording of tf = 10 time steps results in the
following spike train:

𝜌 = [1, 0, 0, 1, 1, 0, 1, 0, 1, 0]

where “0” represents no spike and “1” represents spike. Sliding a rectangular window of width
T = 8 over this spike train results in

Ρ =[1, 0, 0, 1, 1, 0, 1, 0]
[0, 0, 1, 1, 0, 1, 0, 1]
[0, 1, 1, 0, 1, 0, 1, 0]
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Fig 10. Network training (A) Reduction of MSE loss through training with BPTT. Thin gray traces show individual
network seeds, thick black trace shows the average across all 25 seeds. (B) Readout after training 3-layer networks
with Nin =Nh =Nout = 100 to the 4 Hz + 20 Hz sum of sines stimulus. Colored traces are for the readout; the black
trace denotes the true stimulus presented to the network. The top shows the x-dimension of the stimulus and the
bottom shows the y-dimension.

https://doi.org/10.1371/journal.pcbi.1012971.g010

Each of these are then sub-divided into bins of size Δt. If Δt = T = 8, the binned response R
becomes a vector of spike counts over the response window T:

R =[4]
[4]
[4]

If Δt = 4, then the binned response is

R =[2, 2]
[2, 2]
[2, 2]

If Δt = 2, then the binned response is

R =[1, 1, 1, 1]
[0, 2, 1, 1]
[1, 1, 1, 1]

And if Δt = 1, then the binned response becomes identical to the original binary spike
train Ρ.

The above matrix R has size (nsamples × nbins) where nsamples = tf – T + 1 = 10 – 8 + 1 = 3
and nbins = T/Δt. If instead of 1 neuron, we have recordings from Nnrn neurons (as in our pop-
ulation decoding analyses), the same procedure is performed on each neuron’s spike train and
their resulting matrices are stacked together to form a tensor of dimension (nsamples×nfeatures×
nbins) where nfeatures =Nnrn. This tensor is used to decode the stimulus over time. The dimen-
sion along which spikes are binned at resolution Δt is treated as a hidden state for the LSTM
and GRU decoders, so that decoding depends on specific spike sequences. The stimulus is
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stored as a matrix S of size (nsamples × ds) where ds is the dimension of the stimulus, either 1
or 2 here. The task of decoding is to find a function f that forms an estimate Ŝ = f(R) of the
true stimulus S, minimizing the error∑i,j( ̂sij – sij)2. In our analysis, the control parameter Δt
is varied to modulate the time resolution with which spikes are counted. When Δt = 1, there
is no difference between Ρ and R, and the specific timing of every spike is preserved. As Δt
is increased, spike timings within the larger window of size T become increasingly blurred.
The maximum value Δt = T results in a vector R where each entry is the number of spikes that
occurred in the respective time window of duration T. On the other hand, as Δt decreases, the
code becomes more dependent on spike timing than spike count.

We used the Python package keras to perform the decoding with the LSTM and GRU net-
works. Cross-validation was performed by maximizing the validation accuracy using Bayesian
optimization [68] to select hyperparameters.

Single-neuron information theoretic analysis
We follow Putney et al.[25] for the single neuron mutual information analysis. Briefly, the
idea is to compute the mutual information Im between motor outputm and single-neuron
response R via:

Im(m,R) = Im(m,Rc) +
Rc,max

∑
i=1

p(Rc = i)Im(Rt,m|Rc = i) (33)

where Rc is the spike count, Rt is the spike timings, andm is the first two principal compo-
nents of the motor output (forces/torques generated by the wing muscles during hover feed-
ing). The first term in eq. (33) is what we label the “spike count” information and the second
term is the “spike timing” information in the single-neuron analyses of the 5-layer network
results. In our implementation, Rc ∈ℤNT

≥0 where ℤ≥0 denotes the set of non-negative integers
and NT = (Nt/T) is the number of non-overlapping response windows of duration T falling
within the experiment or simulation of duration Nt. For the moth experiments, T = 50 ms is
the same as the wingstroke period of the animal, so NT equals the number of wingstrokes in
this context. The spike timing matrix Rt ∈ℝ(NT×Rc,max) contains the spike timings within each
response window where Rc,max is the maximum number of spikes observed in a single wing
stroke. The quantity p(Rc = i) denotes the probability that a spike count of i was observed.
The mutual information in spike count Im(m;Rc) and the mutual information in spike tim-
ing, conditioned on spike count, Im(Rt,m|Rc = i) were both estimated numerically using the
Kraskov-Stögbauer-Grassberger (KSG) method [65] (see Assocation measures). Since there
is no “motor output” for our network model, we performed this analysis by substituting the
stimulus s for the motor outputm in eq. (33). As the stimulus represents the position of a
target that moths follow, it is reasonable to assume that the stimulus information is directly
reflected in the motor output.

Assocation measures
To quantify the amount of information between stimulus and response in our population
decoding analyses, we employ various association measures between the true stimulus S
and decoded stimulus Ŝ = f(R) based on the response R. If we define Im(X,Y) as the mutual
information between random variables X and Y, the data-processing inequality states that
Im(S, Ŝ)≤ Im(S,R) since Ŝ cannot gain information about R [66]. For large populations of
neurons and small Δt’s, the response matrix R becomes very high dimensional, rendering the
quantity Im(S,R) difficult to estimate directly [64]. Thus, we instead estimate the quantity
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Im(S, Ŝ) which forms a lower bound on the true mutual information of interest Im(S,R). This
is done via the Kraskov-Stögbauer-Grassberger (KSG) method [65], employed via scikit-learn.
For the single-neuron mutual information calculations, we used the Julia package Associ-
ations.jl. In addition to mutual information, which is a nonlinear measure of association
between variables, we also show results with the coefficient of determination R2 (decoding
accuracy) which is a linear association measure.
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