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Abstract 1

Across diverse organisms, the temporal dynamics of spiking responses between neurons, 2

the neural synchrony, is crucial for encoding different stimuli. Neural synchrony is 3

especially important in the insect antennal (olfactory) lobe (AL). Previous studies on 4

synchronization, however, rely on pair-wise synchronization metrics including the 5

cross-correlogram and cos-similarity between kernelized spikes train. These pair-wise 6

analyses overlook an important aspect of synchronization which is the interaction at the 7

population neuron level. There are also limited modeling techniques that incorporate 8

the synchronization between neurons in modeling population spike trains. Inspired by 9

recent advancements in machine learning, we leverage a modern attention mechanism to 10

learn a generative normalizing flow that captures neuron population synchronization. 11

Our method not only reveals the spiking mechanism of neurons in the AL region but 12

also produces semi-interpretable attention weights that characterize neuron interactions 13

over time. These automatically learned attention weights allow us to elucidate the 14

known principles of neuron synchronization and further shed light on the functional 15

roles of different cell types (the local interneurons (LNs), and projection neurons (PNs)) 16

in the dynamic neural network in the AL. By varying the balance of excitation and 17

inhibition in this neural circuit, our method further uncovers the pattern between the 18

strength of synchronization and the ratio of an odorant in the mixture. 19

Author Summary 20

The olfactory system can accurately compute the mixture of volatile compounds emitted 21

from distant sources, enabling the foraging species to exhibit fast and effective decisions. 22

However, altering ratios of one of the compounds in the mixture could be perceived as a 23

different odor. Leveraging the current understanding of neural synchronization on 24

sensory neural regions of insects, we construct a spatial-temporal attention normalizing 25

flow, which partially replicates the AL region’s functionality by learning the spiking 26

mechanics of neurons. Beyond providing insights of the spiking mechanism of neurons in 27

the AL region, our method also produces semi-interpretable attention weights that 28

characterize neuron interaction over time. These automatically learned attention 29
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weights allow us to dissect out the principles of neuron synchronization and interaction 30

mechanisms between projection neurons (PNs) and local neurons (LNs). Utilizing our 31

accurate model of these AL functionality, we show evidence that the behavioral relevant 32

compounds are closely clustered together while varying the intensities of one of the 33

behavioral compounds in the mixture could attenuate the synchronization 34

1 Introduction 35

The brain constructs a meaningful perception of the sensory features of the complex 36

external world, such as intensity, modality-specific classification, and stimulus dynamics 37

[1, 2]. This is particularly true in olfaction, where the complex milieu of volatile odor 38

chemicals constantly varies over many orders of magnitude in concentration in the 39

environment, and the scent from a single odor source can be composed of tens to 40

hundreds of compounds. In vertebrate and invertebrate animals, the olfactory system 41

can accurately compute the mixture of volatile compounds emitted from distant sources, 42

enabling the foraging species to exhibit fast and effective decisions [3–5]. This process 43

incorporates different populations of neurons in succession to encode olfactory 44

information into the spiking language of the neural activity such that the relevant odor 45

information is precisely extracted from the mixtures [6]. 46

Olfactory information from the external world is relayed by the spatiotemporal 47

activity of different populations of neurons in the primary olfactory center, the antennal 48

lobe (AL) in insects, and the olfactory bulb (OB) in vertebrates, leading to the 49

stereotypic activation of glomeruli and thus facilitating an important role in odor 50

classification and encoding [7, 8]. The AL in Lepidopteran moths consists of the 51

network of an excitatory afferent axons of olfactory sensory neurons (OSNs, 330,000 in 52

number, [9, 10] ), projection neurons (PNs, around 1100 in number, [11]) that relay 53

information from the AL to the higher brain areas, and inhibitory local neurons (LNs, 54

approximately 360, [12]) that form a dense network of interconnecting glomeruli within 55

the AL. Previous studies have shown that the PNs, originating from a single glomerulus, 56

can be excited by the stimulation with one or a few components in the mixture, and 57

inhibited by or unresponsive to the other components. The combination of excitatory 58

and inhibitory components in the mixture, and their relative proportions, may modulate 59

the neural activity [13–16]. The responses of the PNs is mediated by the balance of 60

excitatory drive from the OSNs and inhibition from the activity of the LNs [17, 18]. 61

Previous work has suggested that micro-circuits in the AL, and particularly the 62

temporal coordination of LN and PN spiking responses, including neural spiking 63

synchrony, provide odor-specific representations and encoding. Although neural 64

synchrony between PN pairs has been shown to be modulated by the proportions of 65

components in binary mixtures, how the neural population represents the composition 66

of complex odors, and proportion of compounds in those odors, has been demonstrated 67

only rarely. There is a current need for computational tools to model the 68

spatiotemporal dynamics of the neural ensemble, and characterize how different cell 69

types within the population affect the olfactory representations. 70

The Sphinx moth Manduca sexta is an excellent model for understanding how 71

complex odor information is encoded in the olfactory system. Using its sense of smell, 72

this moth navigates over kilometers to locate patches of hostplant, the Datura wrightii 73

flowers. Rather than encoding all 60-80 compounds in the bouquet, it detects around 74

nine critical odorants in the mixture emitted from the flower that elicits its ability to 75

navigate and locate the odor source [3, 5]. Single odorants rarely have behavioral 76

significance to foraging insects. However, a small subset of odorants in the mixture is 77

critical in the odor encoding [3]. Previous studies have shown that changing the 78

concentration of one of the critical compounds significantly affects the moth’s ability to 79
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discriminate and track the floral odor [3]. However, the cellular and computational 80

bases by which the olfactory system binds specific features of the complex odor mixture 81

- including the critical odorants - are not known, and neuromorphic principles that are 82

involved in such processes are still uncertain, given the diverse physiological and 83

morphological properties of these neuron types [19–21]. Evaluating the dynamic changes 84

in the AL network in reaction to different concentration effects remains difficult through 85

direct physiological experiments as the quantity delivered to test species is not under 86

the direct control of experiment; therefore, we propose to analyze the behavior of this 87

elaborated AL network through a data-driven, machine-learning perspective. 88

Previous studies on spatiotemporal encoding of AL neurons have often focused on 89

the spiking synchrony between pairs of neurons [3, 14]. However, biologically, the 90

spatiotemporal responses of the neural population will activate and interact through 91

time. Due to methodological constraints, these previous studies did not capture this 92

important population-level activity. Plasticity in the spiking activities of the neurons in 93

AL is also hard to capture putatively through sensory experiences and inter-subject 94

variabilities. The challenges in modeling the spatiotemporal dynamics at the population 95

level motivated us to build a modeling system to learn the spiking process of a neuron 96

through its history and the related activity of other neurons. The modeling of the 97

neuron spiking process is not new. Generalized linear models with Poisson link function 98

have been well studied for this type of modeling [22]. Latent dynamic methods have 99

also been widely applied to model the spiking activities [23, 24]. However, these 100

methods assume the spike trains follow a temporal process with known arrival time 101

distributions. Recent advancements in deep learning methods that model temporal 102

point processes allow the learning of these processes without assuming a canonical 103

distribution for events’ arrival time. For example, excursions of an Itô’s process have 104

been exploited to learn temporal point process [25]. 105

In this work, we treat the spiking of neurons as a temporal point process. Instead of 106

assuming the arrival time of spikes follows a canonical distribution (e.g. Poisson 107

distribution), we use the highly flexible, non-parametric, deep normalizing flow to model 108

the probability distribution of inter-spike intervals (ISIs) [26]. During the modeling 109

process of the spike train of a specific neuron in the AL, we introduce a novel 110

spatial-temporal attention module to learn how individual neurons synchronize with the 111

rest of the neuron population (spatial) and are affected by population spike trains 112

dynamically (temporal). This spatial attention weight module accounts for the higher 113

order interactions across a population of neurons, allowing us to analyze complex 114

population-level synchronization beyond the pairwise analyses of Ensemble 115

Synchronization Index [3] and Kernelized binless methods [14]. 116

The attention module also allows us to investigate the interaction between different 117

cell types in the microcircuit, including the PNs and LNs. We show that taking all the 118

PNs in an ensemble depicts the discrimination of the behavioral and non-behavioral 119

odor stimuli whereas the LNs did not show significant separation of odor, suggesting 120

that LN mainly modulate the synchronization of PNs. Lastly, we explore how changing 121

the excitatory-inhibitory balance - by changing the proportion of a critical odorant in 122

the natural behavioral stimulus - alters the synchronized activity and odor encoding. 123

The result indicates that increasing the proportion of a compound in the mixture could 124

attenuate the pattern of neural synchrony. 125
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Fig 1. Overview of methods applied in this work. (A) Schematic of the insertion of the
probes in the AL. The 3D model of the brain is acquired from (www.insectbraindb.org).
Images are not to the scale. (B) Schematic diagram of the antennal lobe network
consisting of the projection neurons (PNs) and local interneurons (LNs). The olfactory
sensory neurons (OSNs) after activation by the different odorants (O1, O2, and O3), the
information is relayed to PNs and LNs. Excitatory connections are denoted by an arrow
(green colored) whereas inhibitory connections are denoted by the round head (Magenta
colored). The PNs relay information to the higher brain centers. (C) Architecture of the
spatial-temporal attention normalizing flow. The spike trains are first passed through a
Long short-term memory (LSTM) unit and linear embedding modules to obtain the
spatial and temporal attention weights for reweighting the spike train. The reweighted
spike train is then passed through a second LSTM module, and its final hidden
representation of the reweighted spike train is used as the context vector to train the
conditional normalizing flow for learning distributions of the inter-spike intervals (ISIs)
and generate realistic spike trains. The x, y in the Normalizing flow denotes the input
and output of an affine coupling layer [27]; the subscripts 1, 2 different parts of the
latent variable; t and s denote two different neural networks. OL: Optic lobe; MBL:
Mushroom body lobe.

2 Data Curation 126

2.1 Insect preparation 127

Adult male moths (Manduca sexta; Lepidoptera: Sphingidae) were reared in the 128

laboratory on an artificial diet under a long-day (17/7-h light/dark cycle) photoperiod. 129

The moths (3 days old, post eclosion) were secured in a 10 ml plastic pipette 130

(Thermofisher Scientific, USA) with dental wax (Kerr Corporation, Romulus, MI, USA) 131

leaving the head and antennae exposed. The cuticle on the head was carefully cut to 132

expose the brain, and all the muscles, trachea, and neural sheath were carefully removed 133

with fine forceps (Fine Science tool, USA). The restrained moth was mounted to a 134

recording platform attached to the vibration–isolation table. The preparation was 135
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placed such that the ALs are orientated dorsofrontally. The brain was superfused slowly 136

with physiological saline solution [150 mM NaCl, 3 mM CaCl2, 3 mM KCl, 10 mM 137

N-Tris(hydroxymethyl) methyl-2 aminoethanesulfonic acid buffer, and 25 mM sucrose, 138

pH 6.9] throughout the experiment. 139

2.2 Odor Stimulation 140

Pulses of air (100ml/min) were pushed through a glass cartridge containing a piece of 141

Whatman filter paper (Millipore sigma, USA) loaded with 10 µl of floral odorant and 142

injected into a constant air stream (1L/min) leading to the moth. The stimulus was 143

pulsed through a solenoid-actuated valve controlled by an RZ2 bioamplifier processor 144

(Tucker-Davis Technologies Inc, Florida). The outlet of the stimulus cartridge was 145

positioned 2 cm from and orthogonal to the center of the antennal flagellum. Stimulus 146

duration was 400ms, and five pulses were separated by either a 5-s interval or 10-s 147

interval. The inter-stimulation duration was approximately 1 min. The tested stimuli 148

were categorized as behavioral and non-behavioral if the mixture contained three 149

compounds: Benzaldehyde (BEA), Benzyl alcohol (BOL), and Linalool (LIN). For our 150

first sets of an experiment, we tested behavioral stimuli including extracts of Datura 151

flowers (DatExt), 5 artificial mixtures (P3, P4, P5, P7, P9) containing the behavioral 152

components, and 3 dilutions of one of either P7 (P7 10, P7 100, P7 1000) or P9 (P9 10, 153

P9 100, P9 10000). The non-behavioral stimuli include mineral oil (control, no odor), 5 154

mixtures of non-behavioral components (M2, M3, M4, M5, M6), and 9 individual 155

non-behavioral components. We have also presented the moth with P7 without 156

Benzaldehyde. In the second experiment, to determine how modifying the ratio of 157

compounds in the mixture modified the encoding of the floral odor, we used an odor 158

cartridge containing the P7 mixture and a second odor cartridge containing increased 159

concentrations of Benzaldehyde (10-, 100-, or 1000-fold higher concentrations), Benzyl 160

alcohol (10- and 100- higher concentrations), Linalool (10- or 100- fold higher 161

concentrations). The odor from the two odor cartridges was released simultaneously 162

into the airline, allowing them to mix before reaching the flagellum. In this manner, the 163

ratio of compounds in the Datura mixture (P7) could be dynamically altered. 164

2.3 Ensemble antennal lobe recording 165

The odor-evoked responses of 80 units were obtained from 5 male moths. Recordings 166

were made with 16-channel silicon multielectrode recording (MR) arrays (A4X 4-3 167

mm-50-177; NeuroNexus Technologies). These probes have four shanks (each of 15 µm 168

in thickness) spaced 125 µm apart, each with four recording sites 50 um apart, and have 169

a surface area of 177 µm2. The MR was positioned under visual control with a stereo 170

microscope (Narishige, Japan). As demonstrated in Fig 1A and Fig S1, the four shanks 171

were oriented in a line parallel to the antennal nerve. The MR was advanced slowly 172

through the AL with a micromanipulator (Narishige, Japan) until the uppermost 173

recording sites were just below the surface of the AL. Thus, the four shanks of the MR 174

were recorded from four regions of glomerular neuropil across the AL. Ensemble activity 175

was recorded simultaneously from the 16 channels of the MR array by using TDT 176

amplifiers (Tucker-Davis Technologies Inc, Florida). The recorded signal was digitized 177

at 25 kHz per channel by using synapse software (version 98, Tucker-Davis Technologies 178

Inc, Florida). 179

2.4 Localization of recording probes in the AL 180

The head was excised, and the brains were dissected in the Manduca saline. The brain 181

was washed with 0.01M PBS (2 times: 20 min each) and then submerged in the solution 182
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consisting of 4% PFA and 0.03% glutaraldehyde) to facilitate the fixation of the tissue. 183

The preparation was kept overnight at 4◦C and dehydrated in series of ethanol series 184

(50%, 70%, 90%, 96%, 100%, 100%: 20 min each) and finally cleared in the methyl 185

salicylate (Millipore sigma, USA). The whole mount preparation is scanned with a laser 186

scanning microscope (Nikon, A1R, Nikon Instruments Inc, USA) equipped with a CFI 187

Plan Apo 10X Air objective is scanned with 488 nm line of an argon laser. The 188

high-resolution confocal images with 1024 X 1024 pixels at the distance of 2 – 4 µm in 189

the z – direction were obtained. The image was imported in AMIRA v 6.5.0 190

(Thermofisher Scientific, USA) and the glomerular structures were reconstructed (Fig 191

S1B). The shank impaled in the AL was also reconstructed and visualized. 192

2.5 Spike Sorting 193

The continuous waveforms are exported to an offline sorter (Offline sorter, Plexon, 194

Version 4.7.1). The spike data were digitized at 25 kHz per channel. The filter setting 195

(0.6 - 3 kHz and system gain of 1000 were software adjustable on each channel. Spikes 196

were sorted by using a clustering algorithm based on the method of principal 197

components (PCs) (Off-line Sorter; Plexon). Clusters that were separated in 3D space 198

(PC1–PC3) after statistical verification (multivariate ANOVA; P<0.05) were selected 199

for further analysis (7-19 units were isolated per ensemble; most units were present in 200

Shank 2 and 3; Fig S1). Each spike in each cluster was time-stamped, and these data 201

were used to create raster plots and calculate peristimulus time histograms (PSTHs). 202

The analyses were performed with Neuroexplorer (Nex Technologies, version 5.4) using 203

a bin width of 5 ms. 204

3 Model 205

3.1 Problem Formulation and Notation 206

We denote spike train Sq ∈ RN×T for a total of N neurons, T timesteps, and 207

q ∈ 1, . . . , Q different stimuli. For the n-th neuron, we denote the time of the i-th spike 208

timing as tqni , hence the previous spike’s timing as tqni−1. Then the interarrival time 209

between these two spikes is τ qni = tqni − tqni−1. The goal is to model the interarrival time 210

distribution τ qni for arbitrary spike i. 211

Let [∆] denote the window size and denote a windowed spike train as Si[∆]; we 212

assume the interspike intervals of neuron n are conditionally independent given the 213

stimuli q, the ∆-windowed history of last spike, and time of the last spike to reduce the 214

problem into modeling the distribution of interarrival time presented in Equation (1). 215

For ease of notation, we drop the superscript q and focus on an arbitrary stimulus, we 216

also drop the superscript n and focus on an arbitrary neuron. 217

P (τi|Si−1[∆], q, ti−1) (1)

Our generative modeling approach consists of two main components: 1) the 218

spatial-temporal attention units that encode the windowed spike history to latent space; 219

and 2) a conditional generative model learned with a normalizing flow that models the 220

target distribution presented in Equation (1). Beyond the goal of learning the 221

conditional ISI distribution, the attention weights learned by this conditional generative 222

system can be extracted for further analysis. We present the full spatial-temporal 223

attention normalizing flow (STAN-Flow) architecture in Fig 1C. 224
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3.2 Spatial-Temporal Attention 225

The spatial-temporal attention mechanism combines the vision attention mechanism in 226

computer vision [28] and temporal attention in natural language processing [29, 30]. 227

Synchronization can be seen as interactions between neurons which can be characterized 228

through spatial attention, where a higher spatial attention weight corresponds to a 229

higher strength of interaction between neurons. The importance of particular spike 230

timing and the general spiking rate is characterized by the temporal weights that scan 231

through the spiking history: the higher the temporal weight, the more important a 232

specific time is. Therefore, neurons can be synchronized in their activity even if they 233

have different individual temporal dynamics. 234

The spatial-temporal attention module consists of Long short-term memory (LSTM) 235

layers and a few linear layers. The LSTM layers effectively summarize spike train time 236

series into lower dimensional hidden states, which are then projected by the linear layers 237

to obtain semi-interpretable attention weights. The windowed spike train Si−1[∆] is 238

passed through the first LSTM (f1) and a linear spatial-embedding layer, outputs the 239

hidden representation hi−1 and d-dimensional spike train spatial embedding Ei ∈ RN×d. 240

For the temporal attention, we further reduce hi−1 through a linear layer to obtain the 241

temporal weights, αt
i ∈ R[∆]. 242

Ei = We(Si−1[∆]) + be =
[
e1i , . . . , e

N
i

]T
hi−1 = f1(Si−1[∆])

αt
i = softmax(Tanh(Wαhi−1 + bα))

Additionally, Riffell et al. [3] shows that stimuli information is also encoded by the 243

ensemble firing of neurons. Hence we concatenate the last hidden states of the LSTM, 244

denoted as h∗, the spatial embedding of a particular neuron’s activity emi ,m ∈ 1 . . . N , 245

and the stimuli q to pass through a linear layer and obtain the spatial weights βm
i ∈ R. 246

The vector that contains the spatial weights of all neurons is denoted as βi ∈ RN . To 247

isolate the higher-order ensemble patterns, we replace the traditional softmax of the 248

attention mechanism and apply its sparsifying counterpart sparsemax Martins and 249

Astudillo [31] which directly projects logit values onto the simplex. Applying the 250

sparsemax allows some attention weights to be reduced to zero, amplifying the effect of 251

those synchronized neurons. 252

βm
i = sparsemax(Tanh(Wβ [h

∗; emi ; q] + bβ))

βi =
[
β1
i , . . . , β

N
i

]T
Usual applications of attention weights obtain a context vector through a weighted 253

average of latent variables [29, 30]. However, a weighted average of each neuron’s 254

representation dilutes the synchronization identified through the spatial attention 255

weight as the resulting weighted representation becomes less identifiable. Hence, we 256

reweight the windowed spike train with the mean-normalized spatial-temporal weights 257

and feed the reweighted windowed spike train (S′
i−1[∆]) through a second LSTM layer 258

(f2) to obtain the final hidden representation h′
i−1. The symbol × denotes element-wise 259

multiplication. 260

S′
i−1[∆] = βi[α

t
i]
T × Si−1[∆] (Reweighting Spike Train)

h′
i−1 = f2(S

′
i−1[∆]) (Obtain final hidden representation)

The output of f2, h
′
i−1, can be seen as a context vector derived from the reweighted 261

spike train. This context vector combines the temporal dynamic spike train, the neuron 262

interaction, and the influence of different stimuli into a continuous representation to 263

inform the conditional generative model. 264
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3.3 Conditional Normalizing Flow 265

Once we learn the synchronization and timing information, we build a modeling module 266

to accurately reflect the ISI distribution based on synchronization and temporal 267

dynamics. While traditionally the modeling of spike train follows the Poisson Process, 268

this assumes the spike train is rate coded and the ISI distribution follows an exponential 269

distribution. These assumptions are not always realistic and constrain the modeling 270

process. Instead of a model based on the Poisson assumption, we build a non-parametric 271

deep generative model conditioned on the final hidden representation h′
i−1 to learn the 272

probability distribution of inter-spike interval given the learned history. 273

We chose to apply a conditional normalizing flow that directly optimizes the 274

negative log-likelihood of the density. A Normalizing Flow is usually defined by a 275

transformation of a standard Gaussian distribution into a more complex distribution 276

[26]. This transformation normally consists of a sequence of invertible, tractable, and 277

differentiable mappings enabling the evaluation of a sample’s value in the simple 278

distribution or its likelihood. 279

We concatenate the stimuli q, the last hidden representation of attention-reweighted 280

spike train h′
i−1, and the time of last spike ti−1 into a context vector denoted as xi. We 281

propose a normalizing flow that is conditioned on xi; the likelihood takes the following 282

form with Z being drawn from a conditional Gaussian. Extending recent neural network 283

architecture [26, 27], a loss through log-likelihood can be written as: 284

xi = [h′
i−1; q; ti−1] (2)

logP (τi|xi) = logP (zi|xi)det

∣∣∣∣∂z∂τ
∣∣∣∣ = logP (fθ(τi, xi)) + log

(
det

∣∣∣∣∂fθ(τi, xi)

∂τ

∣∣∣∣) (3)

We specifically applied the real-valued non-volume preserving normalizing flow 285

architecture (RealNVP) in our study [27], where the fθ is characterized through a series 286

of neural networks that construct an upper-triangular Jacobian, simplifying the 287

determinant computation of the Jacobian to be the trace. 288

logP (τi|xi) = logP (fθ(τi, xi)) + Tr log

(∣∣∣∣∂fθ(τi, xi)

∂τ

∣∣∣∣) (4)

We note that this framework considers the spiking history, the interaction between 289

neurons, and the stimuli effect altogether and learns the ISI distribution without 290

assuming it follows some canonical, parametric distribution. Hyperparameters regarding 291

the architecture and training process are recorded in the Supporting Information. 292

3.4 Identifying Synchronization 293

A crucial part of our analysis is establishing a higher-order non-linear method to 294

analyze neuron synchronization. We propose the spatial attention weight method and 295

compare it with two previously reported neuron synchronization methods, the Ensemble 296

Synchronization proposed in Lei et al. [32], and the Kernelized Binless Method applied 297

in Martin et al. [14]; we then discuss the synchronization analysis process of our 298

proposed spatial-attention weights method. 299

Ensemble Synchronization The traditional analysis of ensemble patterns utilizes 300

the cross-correlation coefficient between pairs of neurons Lei et al. [32]. In particular, 301

the synchronization index (SI%) is calculated as 302

SI%ensemble =
[CE]

δ
raw − [CE]

δ
shuffle

N1(T ) +N2(T )
× 100% (5)
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where [CE]raw is the number of coincident events in cross-correlogram peak centered 303

around t = 0 with width δ, [CE]shuffle is the number of coincident events after trial 304

shuffling (shift predictor method) to correct for coincidences attributable to chance and 305

an increased firing rate. The corrected correlograms were calculated by averaging four 306

trial shifts and subtracting the result from the raw correlogram. T is the total response 307

time over which spikes were counted, and N1 and N2 are the number of spikes recorded 308

from units 1 and 2 during time T [32]. 309

We calculated the ensemble SI% for all stimuli using one trial as the raw trial and 310

corrected with shuffling the other 4 trials. We applied the parameters δ = 5, and 311

T = 1000 (msec) after the onset of the stimuli as suggested in [3]. In the supporting 312

informations (Fig S2), we explore a variety of hyperparameters for δ and T . 313

Kernelized Binless Method A more recent method that analyzes the 314

synchronization of neuron firing is through the kernelized binless method [14]. While it 315

remains a pairwise synchronization analysis, it applies an exponential function kernel to 316

smooth out the spike train. Specifically, the exponential kernel is denoted 317

h(t) = exp(−t/τ)/u(t) where u(t) is the heavy side function, τ is a kernel parameter to 318

aggregate spikes over time; a similarity index (see Equation (6)) is then calculated 319

between a pair of neurons’ kernelized spiking. 320

SI%binless =
s1 · s2

||s1||||s2||
(6)

We compute SI%binless with the time constant τ = 5(msec) similar to previous 321

synchronization analysis [14]. Trial shuffling is also applied for the kernelized binless 322

method. In the supporting informations (Fig S3), we explore a variety of 323

hyperparameters for τ . 324

Spatial Attention Method We train a conditional normalizing flow for each neuron 325

by applying a cross-validation scheme in which we rotate 3 trials to form the training 326

set while the other two form the validation and test set. The spatial attention module 327

(see Section 3.2) are learned jointly with the conditional normalizing flow through the 328

loss function (4). For an arbitrary spike i of an arbitrary neuron n, and arbitrary 329

stimuli q, our modeling process would determine a set of attention weights that 330

determines the importance of each neuron in the neuron population. During our 331

analysis, we concatenate the spatial attention for each stimulus, then average the spatial 332

attention weights over all spikes, all neurons, and all runs during evaluation to output a 333

synchronization summary matrix B. The specific calculation is shown in Equation (9). 334

βqn =
∑
i

βqn
i βqn ∈ RN (7)

Bn =
[
β1n · · ·βQn

]
Bn ∈ RQ×N (8)

B =
1

N

N∑
n

Bn (9)

3.5 Classification of neurons into putative PN and LN 335

Although our ensemble recorded neuronal data does not allow us to identify the neuron 336

types, we follow the classification procedure described in Lei et al. [33] to classify PNs 337

and LNs in our spike-sorted units. This classification method relies on the observation 338

that the spontaneous spiking activity of PNs and LNs is different: PNs are more likely 339

to have bursts of spiking activity while the LNs fire regularly. It adopts the criterion in 340
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Legendy and Salcman [34] to detect potential bursts in spontaneous activities (5s) in 341

the full spike train from Poisson Surprise (S) rates, which characterizes the abrupt 342

changes spiking rates compared to the mean spike rate. 343

S = rT − log[
∞∑
i=n

(rT )i

i!
] (10)

The Poisson Surprise rate for a set of spikes is computed from the time span T of the 344

set and the mean firing rate r which is the number of spikes n in the set divided by T . 345

The burst is detected by first finding a pair of successive spikes whose inter-spike 346

interval (ISI) is less than the mean ISI of the spike train multiplied by a designated 347

coefficient p(0 < p < 1). Subsequent spikes are added to the pair of spikes to formulate 348

a spike set with the largest possible Poisson Surprise value, and the earliest spikes are 349

pruned from the set if that further increases the Poisson Surprise of the spike set. 350

Finally, the spike set is regarded as a burst if it consists of at least 3 spikes. 351

With all burst occurrences detected throughout the spike train, we use them to 352

calculate 9 burst-related features for a particular neuron Lei et al. [33]. A logistic 353

regression is finally fitted with the 9 burst-related features as covariates to classify the 354

type of neurons as PN or LN. 355

We train a similar logistic regression based on the spontaneous spike train obtained 356

from intracellular recordings and stainings in Lei et al. [33], the validation accuracy is 357

around 85%. Then using this logistic regression model, we classify the neurons collected 358

through section 2. During our initial data analysis, we found that the distribution of the 359

average spike rate of the data from [33] is different from our spike-sorted data. The 360

difference in distribution resulted in scale differences in the 9 burst-related features. To 361

resolve the difference in the features, we applied the following processing steps: 362

1. We tune the p parameter in the procedure for detecting potential bursts to obtain 363

burst-related features in a similar scale. We used p = 0.2 while p = 0.5 is 364

defaulted in Lei et al. [33]. The p parameter defines the ratio between the mean 365

spike rate (mr) and the spike rate of potential burst segments (br) and classifies 366

the segment as burst when mr/br < p. 367

2. We remove three of the 9 features where the significant scale differences cannot be 368

resolved by the tuning of p. The 6 features we used to classify the neuron types 369

are within-burst max spiking frequency, within-burst number of spikes, percentage 370

of burst spikes, burst frequency, mean Poisson surprise, and max Poisson surprise. 371

3. We apply two different min-max scalers to the training data [33] and the testing 372

data (described in section 2), respectively. 373

Once the neurons are classified, we supply our predicted labels to human experts to 374

assist in the annotation of true neuron types. We refer the readers to Lei et al. [33] for 375

the details regarding the classification method. 376

3.6 Response index and Cosine similarity 377

Response Index Response Index was computed in our study to investigate the 378

response of different units to the odor stimuli and also to assess the similarity of 379

generated and real spike trains under different stimuli for every units ( Riffell et al., 380

2009). The response index is calculated as the following: 381

RIodor =
(Rodor −Rcontrol)−Rmean

SD
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where the Rodor is the response of a specific odor; Rcontrol is the response of control ( 382

mineral oil); Rmean is the mean response averaged over all stimuli, and SD is the 383

standard deviation of the response across all stimuli. Response in this study means the 384

number of spikes over the stimulation period (0-400ms after the onset of stimuli). 385

Cosine Similarity Cosine similarity was used to study the similarity between 386

synchronization patterns of different stimuli. The cosine similarity essentially measures 387

the angle between two vectors; the values of cosine similarity reside in [−1, 1] for -1 388

being the least similar and 1 being the most similar. For any two vectors v1, v2, the 389

cosine similarity is defined as: 390

cosine similarity =
v1 · v2

||v1||||v2||

The · denotes the dot product, || · || denotes the norm of a vector. 391

4 Results 392

By leveraging known biological phenomena of the spiking and interaction between 393

neurons in the primary olfactory center, the antennal lobe (AL) acquired through 394

inserting silicon multielectrode array in Manduca sexta (Fig 1A and Fig 2B), we 395

designed STAN-Flow to model the fundamental neuron spiking mechanism and neuron 396

interactions in the AL (Fig 1C). We validate our method from three different 397

perspectives: 1) can STAN-Flow generate realistic spike trains that follow the 398

distribution of collected spike trains? 2) can STAN-Flow learn to discriminate 399

behavioral and non-behavioral stimuli through its spatial attention weights that mimic 400

the synchronization of neurons? 3) can STAN-Flow automatically detect the 401

interactions between different types of neurons in the AL region? As we find convincing 402

evidence that SPAN-Flow indeed learns the neuronal spiking and interaction activities, 403

we then use STAN-Flow to test whether the pattern of synchronization between PNs 404

and LNs is reduced when the component odorants differ from their concentrations in 405

behaviorally relevant complex odor mixtures (e.g. floral scents that trigger foraging). 406

The related formulas used for evaluations including the Response Index (RI) and cosine 407

similarity are described in Supporting Information A. 408

4.1 Antennal lobe network dynamics and spike train 409

generations 410

One major aspect of validating the STAN-Flow architecture is examining how similar 411

the generated spike trains are compared to the real neuron recordings. In Fig 2A, we 412

present the spike train of a specific unit in response to an odor with 5 trials. We note 413

that odor-evoked activities start about 400 msec after odor stimulation. At around 400 414

msec the neuron starts a burst of activity from the stimulation, and then the spiking 415

activity diminishes after 800 msec. The generated spike train (green, Fig 2A) 416

realistically captures this change in firing rate before, during, and after the stimuli. We 417

conclude that there are no differences in the real and generated distribution of ISI 418

(Kolmogorov–Smirnov (KS) Test1, P > 0.05; Two One-Sided T-Test (TOST) for 419

distribution mean2 [35], P< 0.05). We also found no significant differences in the 420

average firing rate of a neuron for real and generated spike trains (two-sided, 421

1The KS-Test will reject the null hypothesis if two distributions are statistically different
2Also known as the test of equivalence for two independent samples; the TOST will reject the null

hypothesis if the means of the two distributions are within the ±∆ region. We choose ∆ = 2msec
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Fig 2. STAN-flow learns the generating distribution of ISI. (A) Comparison of Real
spike train of a particular projection neuron across 5 trials (black) vs a generated spike
train of the same neuron (green) under P9 stimuli; the grey bar indicates stimulation
window. (A1) Violin plot of ISI of real and generated spike train in (A) under P9
stimuli the dashed line indicates the 25%, 50%, and 75% quartile. (A2) Comparison of
real vs generated spikes’ average spike rate. (B1) Real spike trains of 10 neurons
stimulated with P9. (B2) Generated spike trains of 10 neurons stimulated with P9; the
grey bar indicates the stimulation window. (C1) Response Index calculated with a
population of neural response to the floral scents. (C2) Response Index calculated with
model generated population neural response as (C1). ns: Not significant

two-sample t-test, df=8, P>0.05), indicating that the generated spikes are similar to the 422

real ones (see Fig 2A1 and Fig 2A2). 423

We also examine the generated spike trains across a neuron population. We present 424

the real and generated spike trains of 10 units stimulated with a behavioral odor, 425

respectively (Fig 2B1 and Fig 2B2), showing that STAN-Flow generated spike train 426

changes correspond to the temporal dynamics of the real neural response. We compute 427

the Response Index (RI; Fig S4 according to the computation formula described in 428

Supporting Information A) across all neurons and stimuli. The ensemble responses to 429

the floral scent for the generated spike trains correspond well with the real indicating 430

that the STAN-Flow follows the spiking pattern of the actual recordings across different 431

stimuli and neurons. This multi-neuron and multi-stimuli comparison further confirms 432

the state-of-the-art modeling capabilities of STAN-Flow in learning the spiking process 433

of neurons in the AL region. 434

4.2 Spatial attention weights classifies stimuli 435

The AL relies on different cell pairs synchronizing with one another, or a specific subset 436

of the critical neurons to encode the behavioral and non-behavioral stimuli [3, 36]. Our 437

method capture this synchronization mechanism through the spatial attention module. 438
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Fig 3. Clustering behavioral and non-behavioral stimuli through different
synchronization methods. (A) Spatial attention weights separate the behavioral stimuli
(represented by different shades of green) from the non-behavioral stimuli (different
shades of Magenta) by forming two distinctive clusters in the 2D TSNE reduced space.
The behavioral stimuli cluster is highlighted with a brown background. (B) Elements of
the upper triangular matrix are extracted as a vector from the pair-wise Ensemble
Synchronization Index matrix, and then reduced to 2D through TSNE. (C) Similar to
(B), but we reduced the upper triangular matrix of the pair-wise Binless synchronization
through 2D TSNE. (D) Bargraph represents the 2-class Kmeans algorithm with the
Spatial-temporal attention (STA) method repeated with 100 different initializations.
Kmeans accuracies of the Ensemble Synchronization index (EI, P>0.05) and Kernel
Binless (KB, P>0.05) clustering are significantly less accuracies to STA. *** denotes
P<0.001 and ns is non-significant

The spatial attention module assigns an attention weight to each of the units of the 439

spike train input. The attention weights are then rescaled by the mean to reweight each 440

unit’s spike train for generative modeling. We extract the spatial attention weights and 441

compute a summary matrix B through Equation 9, where each row of B represents a 442

stimulus, and the columns represent the relative importance of each unit and hence is a 443

measure of synchronization that includes activity distribute across time and across 444

neurons with different individual spiking dynamics. The spatial attention method takes 445

all neurons into account during the modeling of spike trains, thus offering the ability to 446

characterize the synchronization of multiple neurons beyond pairwise analyses. 447

We apply t-distributed Stochastic Neighbor Embedding (TSNE) to compare our 448

method with other synchronization analysis methods [37]. We compute the pair-wise 449

synchronization matrix for pair-wise methods including the Ensemble Synchronization 450

Index [3] and the Binless method [14]. Then through TSNE, we reduce the dimension of 451

B, and the upper-triangular matrix of the pair-wise synchronization method of 452

Ensemble method [3] and Binless method [14] into two dimensions and present the 2D 453
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scatter plot in Fig 3. Our result demonstrates that the spatial attention weights 454

distinctly separate the stimuli into two clusters: one includes all the stimuli mixtures 455

that contain all the behavioral components, and the other cluster includes the individual 456

odor molecules as well as mixtures containing non-behavioral components (Fig 3A and 457

Fig S5). Two exceptions are grouped with the behavioral relevant stimuli space: the 458

single odor benzyl alcohol (BOL) and M2 (mixture containing BEA and BOL: Riffell 459

et al. [3]). These results suggest that BEA and BOL could be essential to the behavioral 460

responsiveness of complex odors. In addition, we compare the Ensemble synchronization 461

index (ESI) and Kernelised binless (KB) method performed on our datasets that fail to 462

display any such clustering effect(Fig 3B and Fig 3C). We measured classification 463

accuracy through a 2-class K-means algorithm to test the methods’ ability to separate 464

the behavioral and non-behavioral stimuli and found that our method is better at 465

classifying the oder by their functional relevance. While there is no significant difference 466

between the Ensemble synchronization and the Binless method with an accuracy of 467

around 60%, our method offers an enhanced accuracy of around 80%. We also note that 468

we iterated our method 100 times with random initialization, and it consistently 469

outperforms the other methods (One-sided z-test, Ensemble Synchronization Index: 470

p-value<0.01, Binless method: p-value<0.01). This enhanced result shows convincing 471

evidence that spatial attention is a more robust method for characterizing 472

synchronization in a complex setting. The other methods were previously only applied 473

to populations of projection neurons [3, 14]; we conjectured that ESI and KB failed to 474

separate the stimuli types in this neural population because both LNs and PNs are 475

present. This enhanced performance in separating the behavioral and non-behavioral 476

stimuli when different types of neurons exist in the neuron population propels us to 477

understand how the spatial attention models the interaction between LNs and PNs. 478

4.3 Detecting the interaction between PNs and LNs 479

We have shown that the spatial attention is robust in dealing with multiple neuron 480

types, allowing us to capture the synchronization mechanism that separates different 481

stimuli. We now analyze the interaction relationship between different types of neurons 482

through spatial attention. Our multi-unit recording in the AL, however, does not permit 483

a morphological identification of the PNs and LNs. To classify the neurons, we utilize 484

previous results that found the PNs and LNs have distinctively different spontaneous 485

patterns of spiking activities (Fig 4A) [33]. The PNs burst from time to time during 486

spontaneous firing, while the LNs spike regularly. Based on this observation Lei et al. 487

[33] developed a simple method to classify the neurons based on their spiking dynamics. 488

We apply the method developed in Lei et al. [33] to classify the neurons based on their 489

spontaneous spiking. Instead of the 9 parameters, we measured the six parameters 490

describing the burstiness of the PNs and LNs and fed to the logical regression and 491

categorizing the neurons (we visualize 3 in Fig 4B). We refer readers of the details of 492

this classification process to section 3.5. We then supply our classification result from 493

logistic regression to human experts to further identify neurons with high classification 494

uncertainty. The classification accuracy computed against expert label was 78% while 495

the validation accuracy using data from Lei et al. [33] is about 75%. 496

The essential question in this analysis is to understand the interaction between the 497

PNs and LNs. As Lei et al. [32, 36] and Tanaka et al. [38] suggested, LNs modulate the 498

PNs synchronization, and the PNs synchronize among themselves [14] to encode 499

behavioral and non-behavioral stimuli. We extract the synchronization patterns of PNs 500

and LNs from the joint model, where we train using the entire population of neurons in 501

our recordings, and apply the 2D TSNE analysis to the synchronization matrices. 502

Results showed that the PNs’ synchronization matrix continued to separate the 503

behavioral and non-behavioral stimuli in 2D reduced space while there were no visible 504
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Fig 4. Spatial Attention module learns the interaction between two neuron populations
in the antennal lobe. (A) Representative morphology and physiology of the local
interneurons (LNs) and Projection neurons (PNs). LN spikes more regularly while PN
spikes in a burst pattern. (B) Selected features used to classify neuron types; the
difference between PN and LN is consistent with previous analysis of Lei et al. [33]. (C)
The spatial attention of PNs and LNs (C1) was separately extracted from a joint model
(trained with both PNs and LNs) and then reduced to 2 dimensions through TSNE.
The behavioral cluster of stimuli is highlighted with light-shaded gray. (D) TSNE
reduced 2-dimensional scatter plot of Spatial attention with the model trained with PNs
only and with LNs only (D1).

clusters in LNs’ synchronization responses (Fig 4C and Fig 4D). Such behavior, 505

however, is not observed when we trained a STAN-Flow for each neuron type: the 506

spatial attention weights do not cluster for either the PN-only or the LN-only model 507

(Fig 4D and Fig 4D1). The contrasting clustering behavior in Fig 4 suggests that we are 508

able to recover the interaction mechanism between PNs and LNs. To obtain clusterable 509

representation with PNs, LNs must be available during the modeling process–the AL 510

region and the STAN-Flow need the LNs to modulate the synchronization of PNs for 511

properly identifying the behavioral and non-behavioral stimuli where the LNs might 512

inhibit the neuron processing the non-behavioral component (Fig 4C and Fig 4D). 513

Together, these results highlight the functional significance of the LNs in PNs’ 514

synchronization. 515

Our previous result has highlighted that LNs are critical for odor classification, but 516

could there be a core neuronal unit in an ensemble that accounts for the segregation of 517

behavioral and non-behavioral stimuli? As we showed that spatial attention consistently 518

clusters the behavioral and non-behavioral odors, we now test the Kmeans clustering 519

accuracy by removing each unit in an ensemble. We found one LN significantly lower 520

the classification accuracy (86% before removal vs 78% after removal). This neuron 521

responds to both behavioral compounds and non-behavioral compounds Fig 2C1, unit 522

14). In addition to single neuron analyses, we removed a combination of up to 3 neurons 523

(data not shown). We found a specific combination including the LN (unit 14, Fig 2C1) 524

and two other PNs (units 2 and 5, Fig 2C1) will lower the clustering accuracy to 52%. 525

These PNs responded to most of the behavioral compounds. These results further 526

indicate that broadly tuned LNs could be core neurons for odor classification in 527
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combination with the PNs which are responsive to the behavioral compound only. 528

4.4 Altering the excitatory drive attenuates synchronization 529

The previous analyses showcase STAN-Flow’s accurate recovery of the general 530

functionality and spiking activity of the AL region. We showed that STAN-Flow can 531

not only generate realistic spike trains for different neurons and different stimuli but is 532

also able to discriminate behavioral and non-behavioral stimuli through its spatial 533

attention module that mimics the neuron synchronization of the AL region. We also 534

show that the attentional method can recapitulate the interaction relationship between 535

PNs and LNs by examining the synchronization pattern of each neuron type, even 536

demonstrating that the clustering of odorants into behaviorally relevant stimuli occurs 537

in the PNs but is dependent on underlying LN dynamics. Knowing that STAN-Flow 538

captures the synchronization dynamics of the AL, we next tested the hypothesis of how 539

the neural synchronization and clustering are tuned to fluctuating naturally occurring 540

odorant concentrations. We changed the odorant ratio by altering the component 541

concentration of benzaldehyde (BEA) in a behaviorally relevant odor mixture (P7). We 542

retrained STAN-Flow with neural activities from individual compounds, P7, and P7 543

with added BEA (10, 100, and 1000 fold increase). We first repeat the TSNE analysis 544

with the summary matrix B (see Fig 5A). This module clusters the individual 545

components to the top right corner, the P7 with different BEA intensities in the middle, 546

and control to the far left. 547

To compare the ensemble representation of the increased concentration of BEA, we 548

compute two different metrics to analyze the similarity and dissimilarity of 549

synchronization patterns. We chose to apply cosine similarity (see Supporting 550

Information A) that measures the similarity patterns between the P7 mixture with 551

increased BEA ratio and the original P7 mixture. Interestingly, the similarity decreased 552

linearly from a 10-fold increase to a 1000-fold increase in the concentrations of BEA 553

(Fig 5B). The second analysis examined the odor-evoked responses of the increased 554

concentration of BEA in the multivariate space through normalized Euclidean distances 555

(normalized by mean). We compute the Euclidean distance (dissimilarity index) 556

between the P7 odors and different intensities of BEA and also the individual odor 557

compounds. In Fig 5C, We found that the higher concentrations of BEA in the P7 558

mixture induced a more dissimilar synchronization pattern to those of P7 indicating 559

that the increased concentration of BEA could lead the moth to identify these stimuli as 560

non-behavorial. Our finding further indicates that the neurons in the AL region use 561

synchronization to encode and classify different odors. The neural synchrony is sensitive 562

to changes in the compound concentration or its proportion in the odor, leading to their 563

efficient identification of behavioral odors under various chemical stimulus conditions in 564

the wild. 565

5 Discussion 566

Here in the current study, we elucidated the effects of network dynamics in the antennal 567

lobe (AL) to classify behavioral and non-behavioral relevant odors. We developed the 568

spatial-temporal attention normalizing flow (STAN-Flow), an accurate computational 569

model representing the spiking ensemble dynamics of the AL. We adopt this model to 570

extend the characterization of the AL network beyond the experimental possibilities. 571

The model effectively reproduced the key features of AL responses in relation to the 572

odor classification. This model also demonstrated that local interneurons play critical 573

roles in the temporal encoding of odor stimuli, enabling the classification of odors into 574

behavioral and non-behavioral stimuli. Shifting the concentration of one of the 575
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Fig 5. Changes in synchronization pattern with increased Bea ratio in P7. (A)
Two-dimensional scatterplot of the TSNE reduced spatial attention weights. (B) Cosine
similarity of synchronization pattern between P7 and P7 with increased Bea
concentration in the mixture (n = 5 trials). (C) Euclidean distance of P7 spatial
attention weights computed against P7 with increased Bea ratio, individual behavioral
component, and P7 without Bea.

behavioral compounds in the odor mixture - by altering the balance of excitation and 576

inhibition in the AL - causes the neuronal representation of this stimulus to change. 577

This computational model can be easily modified to be applied in various fields for 578

accurately modeling and reliably interpreting complex interactions for biological and 579

non-biological systems. 580

Neurophysiological computation in the AL The AL is one of the most studied 581

neural structures of the insect brain in terms of detailed cellular- and circuit-level 582

architectures for sensory encoding. Over the last two decades, behavioral, physiological, 583

and modeling research has made great strides towards understanding the circuit basis of 584

processing complex odor mixtures, their intensities, and also their relation to odor 585

classification. Understanding the role of the AL in odor perception has been the focus 586

of a variety of theoretical and computational models. The dynamic and complex stimuli 587

necessitate utilizing the computational models to extract the features of interest from 588

the spike trains [22]. The STAN-Flow developed in this study serves this purpose: its 589

flexibility simulates the spike train generation process and successfully discriminates 590

and classifies complex odors. This model could be beneficial in identifying future odors 591

whether or not they could be relevant to insects, predicting the population response, 592

and simulating the spike trains of the neurons. 593

This computational model can cluster the odors into behavioral relevant and 594

non-behavioral relevant groups (Fig 3 and 5). Our approach improves clustering into 595

behavioral and non-behavioral odor stimuli and is highly efficient. It could potentially 596

facilitate further processing in the higher brain centers such as the lateral horn (LH) 597

[39, 40]. Given the ample neuromorphic knowledge on downstream neurons from the AL 598

and its circuits, it is still unknown, to date, how this spatio-temporal information is 599
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processed within the AL and in higher brain centers. 600

There remain a few limitations in the STAN-Flow architectures and related analysis. 601

One main limitation is the interpretability of the neural networks. Although, through 602

post-hoc analysis, we showed that the spatial attention weights can be interpreted to a 603

great extent, there are limited theoretical analyses on the attention module to guarantee 604

the interpretability of the attention weights. There are, however, ways to improve the 605

credibility of the result: one can cross-validated with established results to check if the 606

interpretability matches expectations, as we did with PN and LN classification. In 607

addition, one could repeat the experiments many times (e.g., 100 different 608

initializations) and across subjects to verify the consistency of the result. Another 609

drawback of this current architecture is its scalability. The current training scheme of 610

STAN-Flow for performing the group-wise synchronization analysis requires 611

neuron-specific STAN-Flow; while the number of models scales linearly with the number 612

of interacting neurons, it remains difficult to analyze for a larger population of neurons 613

at a greater scale. Given different modeling scenarios, however, this could be resolved 614

by a more intricate STAN-Flow that can be modified to model synchronization 615

hierarchically when dealing with neurons from different regions; it could also be easily 616

adapted to model a multi-dimensional time series instead of modeling each neuron at a 617

time. Finally, the recent rise of diffusion generative modeling techniques can be applied 618

to improve the normalizing flow [25, 41]. There also exist ways to directly connect the 619

interaction between neurons with the generative component. For example, the 620

interaction between neurons can be connected to interacting particle systems that are 621

characterized through a Mckean-Vlasov diffusion, which can be applied as a latent 622

process to greatly improve the interpretability of the machine learning system [42]. 623

Local interneurons necessitate the PNs synchronous activity The olfactory 624

information is encoded as spatial-temporal patterns in the neural population in the AL, 625

and through the activity of different cell types, such as LNs and PNs. A benefit of the 626

model and resulting analyses provides a dissection of the contribution of different cell 627

types in how the complex odor stimuli are processed. However, the diversities of the 628

PNs following the different antennal lobe tract are not considered due to unavailability 629

of the neuroanatomical data following recording. From this study, recorded neurons in 630

the AL are two putative types: Projection neurons (PNs) and local interneurons(LNs). 631

Most PN responses are dynamic under different odors; some are activated, and some are 632

inhibited with no responses (Fig 2C, Fig S6) due to the interaction of the olfactory 633

sensory neurons (OSNs) and LNs. The excitatory feedforward information from OSNs 634

activates PNs, and the PNs also will also indirectly activate the LNs. It has been 635

speculated that a small subset of glomeruli and associated PNs may be required for the 636

valence-specific response (behavior or non-behavior). Here these neurons could typically 637

exhibit stable and synchronized activity to the odorant mixture even though there is 638

minor perturbation in environment [43–46]. Most of the studies done previously are 639

tested on the binary mixture and a few studies have considered more than two 640

compounds in the mixture [3, 47]. 641

The inhibitory LN connecting the defined subsets of the glomeruli could play a 642

crucial role in understanding the perceptual constancy in the olfactory circuits, 643

especially in understanding the synchronized activity of the PNs to the behaviorally 644

relevant mixture. Previous work has shown pharmacological receptor antagonists, 645

targeting the GABA receptors, abolished the synchronized activity of AL neurons and 646

affected the olfactory behavior of the moths [5, 33]. The LNs modulate the temporal 647

patterns of PNs spiking responses, resulting in odor-evoked activity which can enhance 648

the synchrony of sister PNs within the same glomerulus as well as the synchrony of 649

co-activated PNs from the other glomeruli [13, 14]. However, the structural connectivity 650
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information is still lacking in Manduca sexta, which limits our understanding of the 651

synaptic-level connections between neurons. Electron microscopical studies in fruit flies 652

have shown that the OSNs contribute 75% of the synaptic input to PNs and the 653

remaining 25% is contributed by the LNs [48]. The local interneurons have diverse and 654

complicated spiking patterns [18, 49]. It also has different innervation patterns (within 655

the glomerulus vs across the glomerulus) and innervation targets. It is possible that an 656

LN that makes specific synaptic connections with a given glomeruli could provide the 657

postsynaptic inhibition to the PNs that are processing the non-behavioral relevant odors 658

and receiving information from the subset of behaviorally relevant neurons. This can be 659

ecologically relevant to inhibit the input of the non-behavioral stimulus pathway since 660

they might be the background. In a variety of organisms such as moths and fruit flies, 661

the LNs contain both pre and postsynaptic synapses, and the distribution density of 662

these synapses is biased across different glomeruli, and this bias could eventually affect 663

the extent of the lateral inhibition processing mixture [50, 51]. 664

Concentration varying effects on AL network dynamics Navigating through 665

the complex and dynamic olfactory environment, the moth is challenged with 666

fluctuating odor concentrations. The moth should evaluate the odor and also its 667

intensity. Behaviorally, Manduca has been shown that a subset of the behaviorally 668

relevant odorants is processed in a quick (<500 ms) and reliable manner [4]. Suppose 669

one of these compounds is removed in the 7-component behavioral mixture. In that 670

case, they are evaluated as non-behavioral and the neural population responses are 671

clustered outside the neighborhood of the 7 component floral behavioral mixture (Fig 672

3A and Fig 5A) [3, 5]. The behavioral compound such as BEA could play a significant 673

role in the discrimination of the odors in behavioral or non-behavioral and thus affect 674

the olfactory navigation. 675

The decreasing intensity of the floral mixture, diluted up to 1000-fold clustered with 676

the Datura floral mixture (This study, Fig 3, [3]) could be due to gain control of the 677

LNs [52]. Altering the ratio of Benzaldehyde in the floral mixture, we noticed that 678

different ratios are clustered outside the neighborhood of the floral mixture. The 679

concentration of the same odor may have different or even opposite values [44] and this 680

odor could modify the quality of the odor [53]. We suggest that the excitation and 681

inhibition drive of the local interneurons plays a crucial role in such clustering when the 682

ratios of compounds are altered [54]. After pooling the PNs and LNs separately, we 683

were surprised that altered ratios were separated from the floral mixture, but examining 684

the LNs only, the floral mixture was clustered together with the floral mixture 685

containing a 10-fold high concentration of BEA (Fig S6). One potential hypothesis is 686

that the increased proportion of BEA in the mixture suppresses the PNs that encode 687

the BOL and LIN components, and this will alter the excitation/inhibition balance and 688

decrease the synchronized neural activity. It is also likely that altering other behavioral 689

components could induce greater suppression. 690

Significance and Broader Impact Our STAN-Flow explores a new, computational 691

avenue to study interactions within neural systems. The interaction of multiple sensory 692

systems is common in many biological organisms allowing these organisms to respond 693

swiftly and efficiently to complex and dynamic environments. For instance, in other 694

animals and humans, multiple peripheral, central, and motor systems work in concert to 695

produce coordinated behaviors. One prime application of the spatial-temporal attention 696

module, which is a significant focus of our ongoing research, is the modeling of 697

multisensory binding in the brain that is funneled downstream via the descending 698

neurons to the motor program. The neural mechanism of integration of multisensory 699

information in the brain is not known and how they drive the motor program is still in 700
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investigation. The motor programs involve the coordinated activity of individuals and 701

groups of flight muscles that interact dynamically to produce agile movements and 702

abrupt changes in behavior [55]. Despite extensive research, the interactive mechanisms 703

that govern these muscle dynamics remain largely unknown [56]. The spatial-temporal 704

attention module has the potential to uncover these mechanisms by providing a 705

framework that captures the intricate timing and spatial relationships involved in motor 706

coordination. 707

Another significant benefit of the STAN-Flow model is its deep generative 708

component. Biological interactions are inherently stochastic and often do not conform to 709

traditional statistical distributions such as the Poisson or Gaussian distributions [57, 58]. 710

This stochastic nature presents challenges for conventional modeling approaches that 711

rely on these distributions. The introduction of a flexible generative model through 712

neural networks, as seen in STAN-Flow, allows for more accurate modeling of natural 713

phenomena with fewer assumptions about the underlying distributions. This flexibility 714

is particularly important when exploring complex biological interactions that may be 715

high-dimensional and highly non-linear. By leveraging the power of neural networks, 716

STAN-Flow can capture the rich, varied nature of biological data and provide deeper 717

insights into the interactions between multiple brain regions or systems. 718

STAN-Flow’s success in modeling the antennal lobe region has illuminated the 719

potential of combining attention mechanisms with deep generative neural networks to 720

understand the complex interactive relationships between organisms and their 721

environments. The ability of STAN-Flow to accurately model the dynamic and 722

non-linear interactions in the AL region suggests that similar approaches could be 723

applied to both biological and non-biological systems. This attention module could be 724

applied to other sensory systems such as the vision and the auditory system for stimuli 725

discrimination[59]. However, whether one of the systems favors one of the modules 726

(spatial or temporal) is elusive. This opens up new avenues for research in 727

understanding how different neural systems interact and adapt to their environments, 728

ultimately contributing to a more comprehensive understanding of biological complexity 729

and adaptability. Apart from the biological context, STAN-Flow can be used in the 730

digital field [60]. The STAN-Flow can be naturally applied to related tasks such as 731

analyzing videos and speech by summarizing the interaction of different graphic regions 732

and condensing the importance of different periods of videos. By enforcing a set of 733

constraints on the attention weights, it is also possible to extend the module to track 734

objects through space and time. As many climatic phenomena also originate from 735

interactions of local climate [61], STAN-Flow also provides a generative predictive 736

algorithm that allows explicit interaction between local climates to forecast weathering 737

trends in the future. In general, the flexible, semi-interpretable neural network structure 738

of STAN-Flow offers a wide range of applications that can help inform scientists with 739

high orders of interaction between groups or individuals and through time. 740
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Supporting Informations 913

A Equations 914

Response Index Response Index was computed in our study to investigate the 915

response of different units to the odor stimuli and also to assess the similarity of 916

generated and real spike trains under different stimuli for every units ( Riffell et al., 917

2009). The response index is calculated as the following: 918

RIodor =
(Rodor −Rcontrol)−Rmean

SD

where the Rodor is the response of a specific odor; Rcontrol is the response of control ( 919

mineral oil); Rmean is the mean response averaged over all stimuli, and SD is the 920

standard deviation of the response across all stimuli. Response in this study means the 921

number of spikes over the stimulation period (0-400ms after the onset of stimuli). 922

Cosine Similarity Cosine similarity was used to study the similarity between 923

synchronization patterns of different stimuli. The cosine similarity essentially measures 924

the angle between two vectors; the values of cosine similarity reside in [−1, 1] for -1 925

being the least similar and 1 being the most similar. For any two vectors v1, v2, the 926

cosine similarity is defined as: 927

cosine similarity =
v1 · v2

||v1||||v2||

The · denotes the dot product, || · || denotes the norm of a vector. 928

B Hyperparameters of STAN-Flow 929

Throughout the study we used a window size [∆] = 20 msec, our data has a resolution 930

of 1 msec, so 20 msec resulted in a dimension with size 20. The LSTM encoder has 2 931

layers of LSTM units, each has 4 hidden dimension. The output dimensions of the 932

embedding layers for the attention module are 10. The stimuli are one-hot encoded. For 933

the normalizing flow, we applied the RealNVP architecture [27] to construct a 934

normalizing flow with 4 coupling layer blocks, each with a hidden dimension size of 64. 935

The activation function for the s net is tanh and the activation for t net is softplus. To 936

train STAN-Flow, we used an AdamW optimizer with a learning rate of 1e-5. 937

C Additional Result 938

In this section of the supporting information, we include additional results including 939

testing different parameters for pairwise synchronization methods, Response index 940

matrix for other preparations; testing spatial attention’s performance across 941

preparations; and exploring the PN, LN interaction with stimuli that has altered odor 942

ratios. 943

C.1 Identification of the location of probes in the AL 944

Here, we use the approach to acquire the ensemble recordings from the Antennal lobe 945

(AL) via microelectrode silicon probes and visualizing where location of these probes in 946

the AL. We also quantify the number of units (neurons) obtained from these ensemble 947

recordings. 948
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C.2 Testing different parameters for Ensemble Synchronization 949

and Kernel Binless Methods 950

In this subsection, we test the Ensemble Synchronization index and kernel binless 951

methods across multiple preparations with a wide range of hyperparameters. We ran 952

similar 2D TSNE analyses as in section 4.2. Specifically in Fig S2, we compute 953

ensemble synchronization over two different periods (0-500 msec, 0-1000 msec after 954

onset of stimuli), and different binsize (5, 10, 20 msec). Limited clustering can be 955

observed across different subjects and different parameters for the Ensemble 956

synchronization index method. 957

For the Kernel binless method, we tested τ ∈ [2, 3, 4, 5, 6 msec] used to tune the 958

exponential kernel. There is, however, no obvious separation between the behavioral 959

and non-behavioral stimuli (Fig S3). 960

C.3 RI of other preparations 961

We show the STAN-Flow generated and real Response index (RI) across different 962

preparations in Fig S4. The response index matrices between generated and real spike 963

trains are similar across 4 different preparations. Indicating that the STAN-Flow’s 964

generative performance is consistent across preparations. 965

C.4 Spatial attention performance on other preparations 966

We also conducted similar analyses in section 4.2 across different preparations as well. 967

Although the spatial attention does not cluster for these preparations, we show that the 968

behavioral and non-behavioral stimuli are still linearly separable (see Fig S5). 969

C.5 Interaction between PNs and LNs with altered stimuli ratio 970

We show the clustering result of different neuron types for stimuli with altered 971

composition ratios. Fig S6A and S6B shows the clustering of the different concentrations 972

of BEA in the behavioral mixture. We also showcase the RI of this experiment. 973
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Figure S1. Schematic showing the acquisition of raw data from the antenna lobe (AL).
(A) The location of the microelectrode silicon probes in the shank. Only one shank is
used for the demonstration purpose. The green-colored silicon probe measures the
odor-evoked response to the datura floral mixture. The gray bar represents the
stimulation duration. The data is spike-sorted according to the PCA in the offline sorter.
(B) The maximum intensity projection of the AL demonstrates the location of the
probes in the AL. The 3D reconstruction of the probes and glomerulus that is impeded
by these probes in the AL. Scale bar 100um. (C) The number of units obtained from
the ensemble recording with four shanks. Note that the numbers are relatively higher in
shanks 2 and 3. AN: Antennal nerve; D: Dorsal; V: Ventral; L: Lateral
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Figure S2. Two dimension TSNE analyses with the upper triangular matrices of the
pairwise ensemble synchronization methods applied with different parameters on
different preparations. T denotes the length of the stimulation segment that is analyzed,
and δ denotes the binsize used in that specific computation of the ensemble
synchronization index.
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Figure S3. Two dimension TSNE analyses with the upper triangular matrices of the
pairwise kernel binless methods applied with different parameters on different
preparations. τ denotes the time constant parameter of the exponential kernel applied
in the kernel binless method.

July 5, 2024 30/33

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.10.602834doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602834
http://creativecommons.org/licenses/by/4.0/


U
ni

ts
U

ni
ts

Preparation1

Response index

Preparation_2

U
ni

ts
U

ni
ts

Preparation_3

Preparation_4

B
ol

F
ar

G
er Is
o

Li
n

M
2

M
3

M
4

M
5

M
6

M
al

M
yr

N
er

D
at

E
xt P
3

P
4

P
5

P
9

P
9_

10
0

P
9_

10

P
9_

10
00

0

B
ea B
ol

F
ar

G
er Is
o

Li
n

M
2

M
3

M
4

M
5

M
6

M
al

M
yr

N
er

D
at

E
xt P
3

P
4

P
5

P
9

P
9_

10
0

P
9_

10

P
9_

10
00

0

B
ea B
ol

F
ar

G
er Is
o

Li
n

M
2

M
3

M
4

M
5

M
6

M
al

M
yr

N
er

D
at

E
xt P
3

P
4

P
5

P
9

P
9_

10
0

P
9_

10

P
9_

10
00

0

B
ea B
ol

F
ar

G
er Is
o

Li
n

M
2

M
3

M
4

M
5

M
6

M
al

M
yr

N
er

D
at

E
xt P
3

P
4

P
5

P
9

P
9_

10
0

P
9_

10

P
9_

10
00

0

B
ea

Figure S4. Response index of different preparations. Response index is calculated as
shown in supporting information A.
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Figure S5. Spatial attention weights separate the behavioral stimuli (represented by
different shades of green) from the non-behavioral stimuli (different shades of Magenta).
With the gray line, we show that the different stimuli types remain linearly separable.
The behavioral stimuli class is highlighted with a brown background.
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Figure S6. Clustering of the increased concentration of BEA with behavioral
compound. The TSNE plot of the PNs (A) and LNs (B) demonstrates the clustering of
the different concentrations of the BEA in the behavioral mixture (P7). The shaded
brown area represents the clusterin of P7 mixture and P7 + 10 fold increase of BEA
concentration (P7 + 10X BEA). (C, C1) Unit responses of 9 units to the different
volatile stimuli tested and plotted as color-coded response matrices across all units
(rows 1–9) and different volatile stimuli for the real units (C) and generated units (C1).
Each units were classified into projection neurons (PNs) and Local interneurons (LNs).
Note that the response index was affected when the behavioral odor (either BEA, BOL,
or LIN) was increased in the mixture of the behavioral compounds diluted by 10-fold
(P7 10). The effect was greater when Linalool concentration was increased by 1000 folds
in the LN. Different component without BEA was also tested. The control (mineral oil)
was used and is not shown in the plot.
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