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Supplementary Results 
This supplement summarizes the quantitative comparisons we made between animals and 
robots in the five subsystems critical for running: power, frame, sensing, actuation, and control.  
 
The following table summarizes the results of our quantitative comparisons across 
subsystems between biological and engineered technologies. Each subsystem has an 
associated color (orange for power, green for frame, red for actuation, blue for sensing, purple 
for control) that is used in the table to highlight technologies that perform best with respect to 
each metric. This color is also used in the sections that follow to highlight the specific data 
tables that are used to populate the summary table. In some subsystems, all tables will be 
colored; in others, intermediate calculations and datasets are used to derive the quantities that 
populate the summary table, so those intermediaries are not colored. 
 

   Biological Engineered 

Subsystem Metric Units Metabolism Gas engine 
Electric 
battery 

POWER 
Mass-specific 
stored energy kWh / kg 6.7 2.7 0.2 

 
Mass-specific 
delivered power kW / kg 1.2 0.2 10.9 

 
Mass-specific 
refueling power kW / kg 0.8 28,500.0 0.2 

      

 Metric Units Bone, Cuticle Carbon fiber 
Aluminum, 
steel 

FRAME 
Density-specific 
stiffness MPa m3 / kg < 10 71.0 < 30 

 
Density-specific 
strength KPa m3 / kg < 90 516.1 < 200 

 
Mass-specific 
energy J / kg < 1000 3753.7 < 1200 

      

 Metric Units Muscle Electric motor 
Bimorph 
piezo 

ACTUATION 
Mass-specific 
peak torque Nm / kg 6 to 133 14 to 164 11 

 
Mass-specific 
power W / kg 50 to 350 1000 to 10,000 160 

      

 Metric Units Photoreceptor Photoreceptor  

SENSING Light sensitivity photons 1 1  

 # of sensors # 1.00E+08 1.00E+08  



  Units Mechanoreceptor 
Mechanorecepto
r  

 Strain sensitivity strain 1E-5 to 1E-3 1E-11 to 1E-08  

 # of sensors # 1E+2 to 1E+4 1E+01  

      

 Metric Units Myelinated nerve Network cable  

 
Period-specific 
latency (none) 4.15E-03 4.58E-06  

Communication 
Area-and-period 
specific bandwidth bits / m2 2.50E+13 9.72E+15  

CONTROL  Units Brain Integrated circuit  

Computation # of neurons # 1E+06 to 8.6E+10 1E+04 to 1E+06  

 # of synapses # 1E+10 to 1E+15 
1E+07 to 
2.56E+08  

Table S1. Summary of quantitative comparisons. Values and ranges for metrics defined in 
main text reported for biological and engineered technologies.  



Power subsystem performance 

Body mass fraction 

Our aim in this section is to quantify what fraction of the mass of fully-functional runners – such 
as a human or an autonomous legged robot – is composed of the power system. We treat the 
energy storage mass fraction separately and consider the mass fraction required for refueling 
and energy conversion together. We do so as the mass required for energy storage can 
change depending upon the range requirements, and indeed does so throughout the lifespan, 
or throughout an extended migration, in biological runners. 
 
For the purpose of making our calculations understandable, we use the following masses to 
represent animals that are approximately the size of a cockroach, a cat, and a human. 
 

 Body mass M [kg] 

Cockroach 0.005 

Cat 5 

Human 100 

Table S2. Representative body masses for cockroach, cat, and human. 

Metabolism 

What should we consider as the complete subsystem? One approach would be to look at the 
minimum mass of the storage (fat), energy conversion (mitochondria), and refueling 
(digestion) components. Although they are not runners, a complete power subsystem of this 
nature is present in unicellular organisms. Alternatively, we could look at the smallest legged 
insects or the smallest terrestrial mammals (shrews). Here are some interesting numbers for 
these possibilities: A single mitochondrion has a mass on the order of 4E-17 kg, a single cell 
has about 300 mitochondria on average, and the smallest unicellular organisms are on the 
order of 1E-15 kg (107).  The smallest beetles and spiders are on the order of 1E-6 kg (108). 
The smallest terrestrial mammals (shrews) are on the order of 1E-3 kg (87). 
 
Biological power systems can be made on extremely small scales. Here, rather than consider 
how small this subsystem can be made, we consider what fraction of the mass it comprises in 
different sized animals. 
 

For mammals, mitochondria as a fraction of body mass scales with 0.06 𝑀ି1/4 where the units 
of 𝑀 are kg, which we will write as [𝑀ሿ = kg (107). 
  



 

 Mitochondria body mass fraction [(none)] 

Cockroach 0.226 

Cat 0.040 

Human 0.019 

Table S3. Body mass fraction of mitochondria in cockroach, cat, and human. 
  
Franz et al. have the wet gastro-intestinal (GI) tract mass scaling as 0.075 𝑀0.94 for 41 species 
(mass range not reported) (109). The same reference has lizard GI tract mass scaling as 

0.031 𝑀1.159 for 29 species with a range of body masses 0.008–1.123kg. Gordon and Illius 
studied African ruminants and found a greater fraction of the body mass dedicated to 
digestion, as might be expected due to the nature of what they eat and how they extract energy 

from it. They found 0.100259 𝑀1.1 for 21 species with an approximate mass range of 3.7--807 
kg (110). Here we use Franz's mammal scaling relationship as the coefficient falls between 
the three possibilities, and [𝑀ሿ = kg for all preceding formulas. 
 
 

 GI tract body mass fraction [(none)] 

Cockroach 0.103 

Cat 0.068 

Human 0.057 

Table S4. Body mass fraction of gastrointestinal tract in cockroach, cat, and human. 
 
To determine the fraction of body mass dedicated to energy conversion and refueling, we add 
the mitochondria mass to the gastro-intestinal tract mass. 
 

 
Conversion and refueling
body mass fraction [(none)] 

Cockroach 0.329 

Cat 0.108 

Human 0.076 

Table S5. Body mass fraction of conversion and refueling components in cockroach, 
cat, and human.  
 
The mass of body fat in eutherian terrestrial mammals versus total body mass scales with 

0.075 𝑀1.19 ([𝑀ሿ = kg) (111). 
 
A sample of Madagascar hissing cockroaches, Gromphadorhina portentosa, has a body mass 
of 9.59 grams and a measured fat mass of 0.15 grams (112). This equates to about 2% of 
body mass as fat, which is consistent with the mammalian values. 
 

 Body fat mass fraction [(none)] 



Cockroach 0.016 

Cat 0.102 

Human 0.180 

Table S6. Body mass fraction of fat in cockroach, cat, and human.  

Gasoline 

We use BigDog as a representative gas-powered runner, which has a mass of 109 kg (49). 
 
The refueling hardware on the robot is quite light as it mainly consists of the pipe/hose that 
leads to the gas tank. We don't have good values for this mass, but we also didn't think it is 
important as the refueling rate is many orders of magnitude higher than the biological system 
so any plausible mass will not change the comparison. Here we neglect it. 
 
From a presentation report, we know the component mass including engine, drive, pump, heat 
exchanger, and oil tank is 21.4 kg.  In addition, we know the mass of a full tank of fuel is 5.68 
kg, consisting of 4.73 kg of fuel and 0.955 kg of fuel tank. 
 

 Body mass M [kg] Engine and fuel mass [kg] Body mass fraction [(none)] 

BigDog (49) 109.000 27.109 2.49E-01 

Table S7. Body mass fraction of engine and fuel for BigDog robot. 

Batteries 

Batteries differ from biological power and gasoline power in that the mass dedicated to 
refueling, conversion, and storage is integrated into one component, making it difficult to 
separate the individual component masses. The batteries typically used for robots have a fairly 
consistent amount of energy per unit mass. Consequently, what determines their contribution 
to total body mass is the capacity of the battery selected by the robot designers, and the mass 
of the body components that are not dedicated to power. Here we will use a representative 
sample of autonomous battery-powered robots to estimate the typical fraction of body mass 
that the battery-powered system comprises. 
 
Similar to the refueling hardware in gas engines, the mass of the power electronics used to 
charge and discharge batteries is small relative to the battery mass, so we neglect it here. 
 

 Body mass [kg] Battery mass [kg] Body mass fraction [(none)] 

MIT Cheetah 2015 (113) 33.00 3.00E+00 9.09E-02 

MIT Cheetah 2018 (114) 45.00 3.00E+00 6.67E-02 

ETH StarlETH 2014 (115) 25.00 2.58E+00 1.03E-01 

ETH ANYmal 2016 (116) 30.00 3.00E+00 1.00E-01 

Average 3.33E+01 2.90E+00 9.02E-02 

Table S8. Body mass fraction of batteries for quadrupedal robots.  
 



The values are fairly consistent, so we will use the average in what follows. 
 
As a final note, the Cornell Ranger 2012 robot (11), which was designed to set range records, 
had a body mass of 9.9 kg and an estimated battery mass of 2.3 kg, equating to 23% of body 
mass dedicated to battery – more than double the other robots that were not designed to 
maximize range alone. 

Specific stored energy 

Metabolism 

Stored fat has 39.5 MJ / kg (117). Fat is stored in fat cells (adipocytes) which are 87% fuel 
(lipids) and 13% other material (48). Mitochondria converts stored fat into ATP with an 
efficiency that can vary, with 70% being a good approximation (46). 
 

 Mass-specific stored energy [kWh / kg] 

Metabolism 6.682 

Table S9. Mass-specific stored energy for metabolism.  

Gasoline 

The mass-specific chemical energy of gasoline is 13 kWh/kg (54). Combining this quantity 
with the fuel mass of BigDog yields a stored energy of 61.5 kWh. 
 
To determine specific stored energy, we consider the energy delivered, rather than that of the 
raw fuel, because there are efficiency losses in the conversion of energy stored in the fuel’s 
chemical bonds to the potential and kinetic energy of a robot’s limbs. Dunn-Rankin et al. 
present a range of efficiencies for automotive engines (~25–30%) with efficiency going down 
with size (47). Since the engine in BigDog is on the small side, here we will use 25% efficiency. 
Note that this figure captures the conversion of stored chemical energy to the mechanical 
energy output of the engine as this is what we aim to quantify with our metric. The tank to 
wheel efficiency is lower, ~13% (54). See also Figure 18 in (47). 
 
The mass-specific stored energy for BigDog is thus the fuel energy (in kWh) divided by the 
sum of the fuel and tank mass (in kg) multiplied by the efficiency of converting that gasoline 
chemical energy into engine mechanical energy. 
  



 

 Mass-specific stored energy [kWh / kg] 

BigDog 2.704 

Table S10. Mass-specific stored energy for BigDog robot.  

Batteries 

Here we focus on lithium-polymer (LiPo) batteries as they are commonly used in running 
robots. The reported specific energies tend to range between 0.1–0.3 kWh/kg. Other practical 
battery technologies can have higher specific power (118). 
 

 Mass-specific stored energy [kWh / kg] 

MIT Cheetah 2015 (113) 1.55E-01 

MIT Cheetah 2018 (114) 2.17E-01 

ETH StarlETH 2014 (115) 1.72E-01 

ETH ANYmal 2016 (116) 2.17E-01 

Average 1.90E-01 

Table S11. Mass-specific stored energy for quadrupedal robots. 
 
Again there is modest variation in the values. We report the value for the MIT Cheetah 2018 
robot battery as it was designed more recently than the others and the associated publication 
reports a complete set of specifications for the battery performance. 

Specific delivered power 

Metabolism 

Weibel and colleagues, as summarized by Suarez et al., have found that the maximum rate 
of oxygen consumption by mammalian mitochondria is 5 ml/min per cubic centimeter of 
mitochondria (119), essentially independent of animal size. The energy consumed per ml of 
O2 is 21 J (120). To obtain the delivered power, we need to account for the efficiency of 
transforming consumed energy into ATP. As we noted earlier, this efficiency is ~70% (46). If 
we assume that 1 ml of mitochondria weighs 1 gram, we can solve for specific delivered power. 
 

 Mass-specific delivered power [kW / kg] 

Metabolism 1.225 

Table S12. Mass-specific delivered power for metabolism.  

Gasoline 

The delivered engine power in the BigDog 2018 robot is quoted as 15 hp. The power delivered 
by the hydraulic actuators is reduced by conversion inefficiencies. But comparing the delivered 
engine power to the power delivered by ATP or electricity by batteries seems most reasonable. 



 

 Mass-specific delivered power [kW / kg] 

Gasoline 0.175 

Table S13. Mass-specific delivered power for gasoline.  

Batteries 

The LiPo robot batteries described in the previous section have discharge rates (C-rates) of 
40, 45 and 100. C-rate measures the rate at which a battery is discharged relative to its 
maximum capacity.  Here we will report the specifications for the MIT Cheetah 2018 robot 
battery as above, which has a C-rate of 50. A 50C rate means that the discharge current will 
discharge the entire battery in 1/50 hour. We don't correct for conversion inefficiencies as this 
is already included in the C-rate calculation. 
 

 Mass-specific delivered power [kW / kg] 

Battery 10.850 

Table S14. Mass-specific delivered power for batteries.  

Specific refueling power 

Metabolism 

Resting metabolic rate famously depends on body size according to Kleiber's law. For 

mammals, we will use 0.0182 𝑀0.737 ([𝑀ሿ = g) (121). We are assuming that the resting 
metabolic rate is well approximated by the basal metabolic rate (basal rate is lower than resting 
rate). Across a wide range of vertebrates, Diamond and Hammond determined that animals 
can sustain a metabolic rate that is between 1.3-7.0 times their resting metabolic rate (122). 
This sustained rate is the maximum metabolic power they can sustain without losing weight. 
Here we approximate the ratio of the sustained to resting metabolic rate as 5. Finally, we 
normalize by the masses of the digestive system which is our approximation of the hardware 
that is responsible for fueling in biological runners. 
  



 

 Mass-specific refueling power [kW / kg] 

Cockroach 2.89E-04 

Cat 7.11E-02 

Human 7.74E-01 

Table S15. Mass-specific refueling power for cat, cockroach, and human. 

Gasoline 

The rate of refilling a gas tank in a consumer car is a controlled standard, and the energy 
liberated from gasoline is also well known. Previously we assumed the mass of the refueling 
hardware was negligible – for the purpose of this calculation, we assume it is 1 kg. The 
resulting quantity is consistent with the figure in (47). 
 

 Mass-specific refueling power [kW / kg] 

Gasoline 28,500 

Table S16. Mass-specific refueling power for gasoline. 

Batteries 

The LiPo robot batteries described in the Specific Stored Energy section have charge rates of 
between 1 and 5C. This measures the rate at which a battery is charged relative to its 
maximum capacity. Here we will report the specifications for the battery in the MIT Cheetah 
2018 robot (114) as we have a complete battery data set and the specifications are similar to 
the other comparison robots and hobbyist batteries. We don't know its exact charge rate, but 
let's assume it is 1. A 1C rate means that the charge current will charge the entire battery in 1 
hour. 
 

 Mass-specific refueling power [kW / kg] 

Battery 0.217 

Table S17. Mass-specific refueling power for battery.  



Frame subsystem performance 
A robot or animal's frame is the primary means of mechanical interaction with its environment, 
propelling the body forward while overcoming gravity. During these interactions, the frame is 
subject to substantial dynamic forces that often exceed the body weight depending on the 
locomotion modality (123). For example, peak forces during constant average speed human 
running are typically twice the body weight (124). But, during dynamic movements like 
jumping, they can exceed over 100 times for small animals (125). These interactions can result 
in the structural or functional failure of a frame. Our motivation is to define a set of possible 
metrics to capture the performance limits that frames might impose on the agile movement.
   

Material and shape 

We consider frames as structures, combining material properties (for instance, strength, 
stiffness, density) and shape (for instance, length, section modulus, moment of area) to 
support loads and restrict or control motion. Viewed at the level of a component, such as a leg 
segment, shape and material are independent but interacting factors that together determine 
structural performance. This coupling must be taken into account when analyzing this 
subsystem. 
 
To illustrate this challenge, we first consider a foundational function of a runner’s limb: support 
the body’s weight. As a first approximation to understand a limb’s mechanical properties, 
consider a thin-walled tube (such as a bone or strut). When subject to axial forces, such a 
column can fail either by axial compression or buckling as determined by the following 
governing expressions. For a detailed discussion on this topic, we refer the readers to the 
comprehensive textbook by Ashby (126), specifically Appendix A5 on page 482.  
 
During axial compression, the governing equation is    

𝜎௫  ൌ  
𝐹
𝐴
൏ 𝑌 

where: 
● 𝜎௫ is the compressive stress; 
● 𝐹 is the axial force;  
● 𝐴 is the cross section area; and 
● 𝑌 is the compressive strength (Yield or Ultimate). 

  
During buckling, the governing equation is    

𝐹
𝐴

ൌ  
𝜋𝜆2𝐸

2ሺ𝐿/𝑅ሻ2  

where: 
● 𝐹 is the critical force after which buckling occurs; 
● 𝐴 is the cross section area; 
● 𝜆 is the half wavelength signifying the buckling mode; 
● 𝐿 is the column length; and 
● 𝑅 is the gyration radius.      

 



The above expression for compressive stress can be rewritten as,  

  𝜎  ൌ  𝐾
ா

௦2 ൏ 𝑌 

where: 
● 𝜎 is the compressive stress; 
● 𝐾 is a proportionality constant determined by the bending mode;  
● 𝐸 is the elastic (Young’s) modulus (a material factor); 
● 𝑠 is the slenderness ratio (a shape factor); and 
● 𝑌 is the compressive strength (Yield, Ultimate, or Modulus of Rupture as appropriate 

for elastic, plastic, or brittle materials). 
   
These constraints highlight the strong interdependence of material and shape in determining 
the performance of a frame element. 
    
Failure of a column will occur in purely axial compression if the stress (𝜎௫) in the column 
reaches the yield stress (𝑌) of the material (strength-dominated). On the other hand, if the 
critical buckling stress (𝜎, determined by the modulus 𝐸) is less than the yield stress (𝑌), 
then the column will fail by buckling before yield stress is reached (stiffness-dominated). 
 
Our subsequent analyses will focus specifically on thin-walled tubes. We believe this 
simplification is reasonable because thin-walled tubes are remarkably common in the diversity 
of bones across vertebrates or tibia across insects (127). Choosing one specific shape 
enables us to focus on the material properties of biological and engineered frames without 
having to simultaneously consider the shape. Methods to incorporate the effect of shape are 
discussed in detail as ‘shape indices’ in Chapters 5 and 11 of (126). 
 
We will focus on material indices that determine a limb's functional performance primarily 
dependent on stiffness (𝐸) and strength (𝑌) as discussed above. Furthermore, we assume 
that we want the lightest possible limbs for reducing actuation and power subsystem 
constraints and therefore we normalize these material properties by their density (𝐷).  Thus, 
we will consider density-specific stiffness (𝑀1 ൌ 𝐸/𝐷) and density-specific strength (𝑀2 ൌ
𝑌/𝐷), which both contribute to the above failure modes. We compute these for common 
biological (bone and cuticle) and robotic (aluminum and carbon fiber) materials. We also 
include Stainless Steel, a popular engineering material for various non-robotic applications, 
for contrast. Below is the range of material properties derived from (55, 59, 126, 128). 
 

 Stiffness E [GPa] Strength Y [MPa] Density D [103 kg/m3] 

Cuticle 0.001-120 10-1200 1-1.3 

Cortical bone 7-30 100-230 1.8-2.1 

Tendon 1-2 50-150 1.1-1.2 

Natural rubber 0.0015-0.0025 22-32 0.92-0.93 

Kevlar 76 1240 1.38 



CFRP (carbon 
fiber reinforced 
plastic) 69-150 550-1050 1.5-1.6 

Aluminum 68-82 58-550 2.5-2.9 

Stainless Steel 180-210 480-2240 7.6-8.1 

*approximate due to small data points and/or large variance.  
Table S18. Stiffness, strength, and density ranges for biological and engineered 
materials. 
    
Note that Kevlar and natural rubber are examples of specialized materials as described in 
Metric 3 (below) and not used for Metrics 1 & 2.  
 
We choose typical numbers within the above range to evaluate our metrics. 
 

 Stiffness E [GPa] Strength Y [MPa] Density D [103 kg / m3] 

Cuticle 9 100 1.15 

Cortical bone 19 165 1.95 

Tendon 1.5 100 1.15 

Natural rubber 0.002 26 0.92 

Kevlar 76 1240 1.38 

CFRP 110 800 1.55 

Aluminum 75 302 2.7 

Stainless Steel 195 1350 7.85 

*approximate due to small data points and/or large variance 
Table S19. Representative stiffness, strength, and density values for biological and 
engineered materials. 

Specific stiffness 

It is straightforward to compute this metric from the preceding data tables. Carbon fiber 
outperforms all other materials by a wide margin.  
  



 

 Density-specific stiffness M1 = E / D [MPa m3 / kg] 

Cuticle 7.8 

Cortical bone 9.7 

Tendon 1.3 

CFRP 71.0 

Aluminum 27.8 

Stainless Steel 24.8 

Table S20. Density-specific stiffness for biological and engineered materials. 

Specific strength 

Similar to the previous metric, it is straightforward to compute this metric from the data tables. 
Carbon fiber outperforms all other materials by a wide margin.  
 

 Density-specific strength M2 = Y / D [KPa m3 / kg] 

Cuticle 87.0 

Cortical bone 84.6 

Tendon 87.0 

CFRP 516.1 

Aluminum 111.9 

Stainless Steel 172.0 

Table S21. Density-specific strength for biological and engineered materials. 

Specific energy 

The preceding metrics focused on the frame’s ability to support the body’s weight. We now 
combine these metrics to evaluate the performance of frames as they propel the body 
overground. In this capacity, an important function of the frame is to store and return energy 
for increasing the range of locomotion – the frame should function as a spring. We assess a 
spring’s ability to store and release mechanical energy using the material’s capacity to store 
energy defined as the area under the stress-strain curve of the material and normalized by 
density. This material metric is defined by the following equation, which also relates it to the 
previous two metrics.  

𝑀3 ൌ
2

ா
 ൌ  

ெ22

ெ1
  

    



 

 Mass-specific energy M3 = Y2 / E * D = M22 / M1 [J / kg] 

Cuticle 966.2 

Cortical bone 734.8 

Tendon 5797.1 

Rubber 367391.3 

Kevlar 14660.6 

CFRP 3753.7 

Aluminum 450.4 

Stainless Steel 1190.6 

Table S22. Mass-specific energy for biological and engineered materials. 
 
Carbon fiber again outperforms bone, cuticle, aluminum, and steel in this metric. However, 
tendon outperforms carbon fiber. This is not surprising given that tendon’s remarkable role in 
energy storage and release during energy-intensive locomotion is well-documented (129, 
130).  
  
However, there are other engineering materials with more exceptional performance if we 
consider this metric alone. For example, Kevlar has more than twice the mass-specific energy 
of tendon, and natural rubber is nearly an order of magnitude better than Kevlar by this metric. 
However, tendon, Kevlar, and rubber have low specific stiffness and are therefore much less 
effective for load-bearing than the other materials considered. These springy materials are 
best employed within the frame to add specific functionality like passive energy storage and 
return. 
  



Actuation subsystem performance 
A dazzling array of technologies have been deployed in the quest for an actuator that could 
equal or exceed muscle in the pursuit of robotic running. It is a daunting prospect to collect 
comparative metrics for all of them. Luckily, to substantiate our hypothesis we need not do so. 
Here we compare the only natural technology for actuating running (muscle) to the most 
ubiquitous engineered actuator, electric motors, and find that except at small scales, electric 
motors can perform similarly or substantially better than muscle. At smaller scales, we 
compare muscle to the most commonly used solution for autonomous microrobots, the piezo 
bimorph. We find piezos slightly lacking in comparison to muscles at the same scale, but within 
a similar order of magnitude. 

Overview of technologies 

Some general principles constrain the types of actuators available for running. By definition 
runners have legs, and although simple machines might use prismatic (131) or flexible 
structures (132), most animals and robots use jointed structures with multiple segments. Thus 
we consider an actuator for running to be a device that generates rotary motion around a joint. 
Linear actuators like muscle accomplish this with a moment arm, which affords some torque-
speed adjustment at design time.  
 
Muscles are hierarchical molecular machines in a matrix of elastic material. They produce a 
tension force by inducing a conformational change (via a chemical reaction with ATP) in a 
myosin protein, which then ratchets along another protein. Despite the universality of muscle 
as Nature’s actuator, maximum stress and power values range widely, even within the same 
organism. As in engineered actuators, muscles exhibit specialization for tasks (for instance, 
some may be slow but strong, others the opposite). In all muscles, force falls nearly 
logarithmically with shortening speed, producing a maximum power near 1/3rd the maximum 
speed. They have a density near water and have intrinsic stiffness much lower than the metals 
that comprise EM motors. 
 
Electric motors vary in their construction and mechanism of operation but generally harness 
the Lorentz force that arises when a current-carrying wire is placed in a magnetic field. They 
typically spin much faster than joints need to during legged locomotion, so EM motors benefit 
from speed-reducing transmissions. Unlike muscle, EM motor torque need not fall with 
increasing speed, if voltage is high enough.  
 
Piezo bimorphs are cantilever actuators consisting of two active piezo crystal layers 
sandwiching a passive flexible layer. When an electric field is applied, the cantilever bends; 
mechanical output is taken at the tip of the cantilever (133). Piezos typically require relatively 
high voltages, so power electronics can be a challenge at small scales. 
 
Since running necessitates repeated collisions with the ground, the effective inertia at the foot 
is extremely important. The bandwidth of high-speed impacts is typically much faster than that 
of the actuator, so impact forces are not directly controllable and energy loss is inevitable 
(134). Thus actuators must be fairly backdrivable and must isolate as much inertia as possible 
from the end effector. This precludes many transmission approaches like worm gears, lead 



screws, and harmonic drives unless some compliance is added between the joint and the 
transmission. 

Specific peak torque 

In the context of running, actuators most frequently create motion by applying torque at joints. 
Since stronger actuators tend to weigh more, we first compare mass-specific peak torque.  

Muscle 

Values for muscle can be found from direct experiments, or more commonly by making 
assumptions about the maximum stress available in combination with measurements of area 
and moment arm. Maximum muscle force can be calculated by the product of stress and area; 
in the biological literature area is often estimated by physiological cross-sectional area, defined 
as the ratio of muscle volume and fiber length. Therefore, mass-specific torque can be 
estimated by the product of the maximum stress and moment arm over the product of fiber 
length and density.  
 
This calculation assumes parallel fibers; a correction for pennation can be added by dividing 
the specific torque by the cosine of the pennation angle (135). Muscles with large moment 
arms and short fiber length will maximize specific torque. The ratio (moment_arm/fiber_length) 
varies from 0.1 to 0.3 in the cockroach hind limb (136), from 0.3 to 1.0 in the human lower limb 
(137), and generally from 0.1 to 1.0 in the greyhound (135), though more extreme values are 
found for postural muscles especially. Combined with a representative value of maximum 
stress of 20 N / cm2, this rough calculation suggests a possible range of ~20 to 200 Nm / kg 
in running animals. Values found in the literature for invertebrates, dogs, and humans lie within 
that interval. 
 

 Mass-specific peak torque [Nm / kg] 

Cockroach hind limb extensors (136, 138) 10-60 

Hunting spider flexor (139) 30 

Table S23. Mass-specific peak torque for insect muscle. 
 
An extensive set of morphological data in the greyhound provides insight into a range of 
hindlimb muscles in one of the fastest known runners (135). Direct force measurements were 
not available, and a constant specific force (stress) of 30 N / cm2 was used to estimate muscle 
forces. The larger muscles have remarkably low torque density, suggestive of specializations 
for high shortening velocity and high power production in fast running. Some smaller muscles 
with much larger fiber length to moment arm ratios like gracilis and gastrocnemius reach 
values of 33–47 Nm / kg. Data from the three largest muscles are below. 
 

 Mass-specific peak torque [Nm / kg] 

Greyhound biceps femoris  6 

Greyhound sartorius 10 

Greyhound rectus femoris 7.5 



Table S24. Mass-specific peak torque for dog muscle. 
 
In humans, values arise from measurements of (typically) volitional maximum isometric torque 
collected on an isokinetic dynamometer, combined with morphometrics collected from MRI or 
ultrasonography, often combining muscle groups across a joint because humans can’t 
selectively activate single muscles reliably (140, 141).   
 

 Mass-specific peak torque [Nm / kg] 

Human elbow flexors (140) 133 

Human elbow extensors (140) 100 

Human ankle extensors (141) 120 

Table S25. Mass-specific peak torque for human muscle. 

Electric motor 

Direct drive machines have a distinct disadvantage in torque density. Flux saturation limited 
direct drive motors can reach values of ~25 Nm / kg with large gap radius designs (23). Adding 
low-ratio gearboxes (typically single-stage planetary) can improve torque density further.  
 
Higher ratio gearboxes can increase torque density but have diminishing returns due to the 
added weight of the drive. One popular approach, especially in robot arms, is to use Harmonic 
drives, also known as strainwave gears, which use a novel flexible spline ring gear to produce 
very high ratios in a compact single-stage drive. Ratios beyond 100:1 are common. Multi-
stage planetary drives and cycloids are alternatives. To meet the backdrivability requirement, 
all high-ratio drives must use series elastic elements. Walking robots with stiff, high-ratio drives 
typically exhibit stiff gaits and high cost of transport (ASIMO for instance, which uses harmonic 
drives with no series compliance). 
 
Converting an electric motor’s torque to linear motion (for instance, via ball-screw mechanism) 
and back to rotary joint torque via moment arm is another popular approach that results in 
very high torque density.   
 

 
System type or 
configuration 

Total Motor + 
Transmission 
Mass [kg] Torque [Nm] 

Mass-specific peak 
torque [Nm / kg] 

T-Motor U8 (23) Direct drive 0.25 3.5 14 

MIT Cheetah 2017 (142) 
Gearbox (5.8:1), no 
SEA 3.65 313.2 86 

DLR FSJ Variable Stiffness 
Joint (143) 

Harmonic drive 
(100:1), SEA 1.41 67 48 

Harmonic drive + 
Robodrive LM (Not likely 
capable of running, 
included for comparison) 
(144) 

Harmonic drive 
(100:1), no SEA 1.8 182 101 



Univ. Texas UT-SEA, with 
a moment arm of half the 
stroke (6cm) (66) 

Ball-screw with 
series coil spring 1.17 84 72 

MIT TF8 Ankle; omitting 

ankle structure (145) 
Ball-screw with 
series leaf spring 1.064 175 164 

Table S26. Mass-specific peak torque for electric motor. 

Piezo bimorph 

At very small scales, electric motors see dramatically reduced power and torque density. 
Some of the most well known high-performance microrobots use piezo bimorphs for actuating 
wings or legs. The robot HAMR-jr (146) (smaller successor to HAMR (147)) uses 24 mg 
bimorphs to achieve torque density below muscles found in cockroaches but above those 
found in greyhounds. The bimorph motion is amplified with a linkage that is integrated into the 
limb; therefore we omit the linkage mass. 
 

 
System type or 
configuration 

Motor mass 
[kg] Torque [Nm] 

Mass-specific peak 
torque [Nm / kg] 

Piezo bimorph with 
flexures (146) 

Flexure linkage with 
mechanical advantage 2.40E-05 2.70E-04 11 

Table S27. Mass-specific peak torque for piezo bimorph. 

Specific power 

Since running is dynamic, torques must be generated over a wide range of speeds. A common 
way to compare this ability is through mechanical power (the product of speed and torque). 
Again, more powerful motors are heavier, so we compare mass-specific power.  

Muscle 

Since power amplification mechanisms abound (for instance, latch-mediated springs (68)), the 
gold standard for measurements is the workloop (148) – an in vitro technique that cycles 
isolated muscle or its subcomponents while applying electrical stimulation, analogous to a 
motor dynamometer. The technique allows the full performance space to be explored, 
including muscle activation and phase that are not part of the typically observed motor pattern. 
Here we consider power averaged over a whole cycle, since instantaneous power may reflect 
elastic energy storage and return. Specific power values found via this technique still vary over 
~2 orders of magnitude, especially between vertebrates and invertebrates (149). The highest 
known value comes from quail flight muscle. Values for limbs are generally lower, but this 
number gives an "existence proof" of extreme power adaptation to compare against. 
 
When these invasive techniques are not available (for instance, in humans), estimates exist 
for muscle groups across a joint. Joint power can be measured with an isokinetic 
dynamometer or other instrument, or during behaviors that generate mechanical work (for 
instance, acceleration or climbing)  
 



Note that muscle is single-acting and antagonistic in most animals; over one cycle of motion, 
a kilogram of muscle can only contribute power while shortening (for instance, during 
extension only), whereas a kilogram of electric motor produces power in both directions (i.e., 
flexion and extension). In many cases, muscles even actively absorb power while their 
antagonist works, especially when cycling quickly. Although muscles may instantaneously 
produce higher power levels (for instance, over 1000W/kg for quail flight muscle (150)), 
instantaneous values make for a misleading comparison. Therefore, we use cycle-averaged 
power in the following comparison. 
 

 Measurement method Mass-specific power [W / kg] 

Quail flight muscle (150) Workloop 350 

Lizard (148) Workloop 150 

Mouse (151) Workloop 107 

Frog hindlimb extensor (152) Workloop 94 

Locust hindlimb extensor (150) Workloop 75 

Cockroach hindlimb extensor 
(138) Workloop 50 

Turkey hindlimb (153) 
Acceleration; whole 
hindlimb mass used 150 

Human knee extensors (154) 
Cycle dynamometer; test 
duration 5-10 minutes 117 

Table S28. Mass-specific power for muscle. 

Electric motor 

Electric motors produce torque proportional to the supplied current, up to a maximum typically 
determined by magnetic saturation (or more practically, due to heat build up). Unlike muscles, 
motors do not experience intrinsic reduction in force with increased velocity, unless supply 
voltage is limited. Like muscle, motors can be specialized, trading torque, maximum speed, 
and other parameters, so performance values vary. Because high currents can heat a motor 
quickly, the maximum torque and power can be very sensitive to the time horizon. Still, many 
papers cite “maximum” numbers, and we will use those here. At the highest speeds, 
mechanical limits arise due to centripetal forces. 
 
Compared to muscle, electric motors can generate extremely high power densities, typically 
at high rotary speed. Even over longer time horizons, motors can sustain high power density. 
Values near 1 kW / kg can be found for continuous power in commercial off-the-shelf motors. 
When integrated into structures with high ratios, power density can be substantially degraded 
(especially when power supplies are limited), but values still typically meet or exceed that of 
muscle.  
 

 
System type or 
configuration 

Motor mass 
[kg] Power [W] 

Mass-specific power 
[W / kg] 

Typical direct-drive 3- Direct drive (see ref) (see ref) 1000-10,000 



phase motors (134) 

Maxon EC frameless DT50 Direct drive 0.225 150 667 

DLR FSJ Variable Stiffness 
Joint (143) 

Harmonic drive 
(100:1), SEA 1.41 600 426 

Univ. Texas UT-SEA, with 
a moment arm of half the 
stroke (6cm) (66) 

Ball-screw with 
series coil spring 1.17 110 94 

MIT TF8 Ankle; omitting 
ankle structure (145) 

Ball-screw with 
series leaf spring 1.064 350 329 

Table S29. Mass-specific power for electric motor. 

Piezo bimorph 

Piezo bimorphs can generate high power at high frequencies, but may be more limited in limb 
structures with lower resonant frequency. HAMR’s actuators resonate at 1600 Hz, generating 
over 300 W/kg, but when integrated into a robot resonate at 75 Hz and generate only 38 W/kg. 
HAMR-Jr’s legs resonate at higher frequencies, enabling about 4X more power density of 160 
W/kg, substantially more than its biological inspiration.      
 

 
System type or 
configuration 

Motor mass 
[kg] Power [W] 

Mass-specific power 
[W / kg] 

Piezo bimorph with 
flexures (146) 

Flexure linkage with 
mechanical 
advantage 2.40E-05 3.84E-03 160 

Table S30. Mass-specific power for piezo bimorph. 

  



Sensing subsystem performance 
Our motivation is to capture the performance limits that sensors might impose on the 
generation of controlled, agile movement. Biological sensing is classically partitioned into 
exteroception and proprioception. But the former strictly is the sensing of external cues, 
whereas the latter is typically defined as the sensation of self-movement, pose, and internal 
mechanical state. As a result, these are not a true dichotomy. Internal sensing can be 
chemically mediated and the detection of external cues through force transmitted through the 
body such as vibration and load sensing belie this partition. An exoskeletal strain receptor or 
even a muscle stretch receptor could therefore detect deformations produced by self-motion 
or respond to externally applied forces, especially during unsteady movement. Nonetheless, 
it is a useful heuristic for discussing the use case of sensors in behavior. Interestingly such a 
dichotomy does not seem to exist in the engineering literature, likely because specific sensors 
are often designed to capture only specific single modalities. In these cases, roboticists often 
design control of specific task variables to utilize a specific few sensory modalities leading to 
dichotomies like force versus positional control that do not align with organisms’ typically 
multimodal strategies.  
 
The most common metrics for sensors in engineered systems are sensitivity and resolution. 
The former is a ratio of the change in the sensor to the sensor output. The resolution is the 
smallest amount of change in the input that can be resolved as a change in the output. Similar 
definitions have been used in the biological literature with the output of a sensory neuron often 
quantified by the firing rate of action potentials or the membrane potential of the neuron. A 
challenge with comparing sensitivity and resolution across systems is that their values are 
context-dependent: they can depend both on the design of the sensors themselves, the power 
supplied, and the situation in which they are deployed.  

Threshold sensitivity 

We define threshold sensitivity as the minimum amount of input needed to register a 
detectable change in the sensor’s output. The units depend on the type of sensors (for 
instance, photons, nm, concentrations).  

Photoreceptors 

Vision thresholds are defined by the number of photons needed to produce a response. Both 
invertebrates and vertebrates can achieve single photon thresholds with quantized bumps in 
their photoreceptor’s membrane potential (71). The best engineered semiconductor 
photodiodes can also achieve this resolution (72). 
 

 Photoreceptor threshold sensitivity [#] 

Vertebrates & Invertebrates 1 photon 

Single Photon Avalanche Diodes (SPAD) 1 photon 

Table S31. Biological and engineered photoreceptor threshold sensitivity. 



Mechanosensors 

For mechanosensation there are a larger variety of ways to measure displacement or 
deformation, but both biological and engineered systems often rely on strain (ε = ∆L/L). 
Campaniform sensilla are typically between 101 and 102 µm and have a detection threshold 
of 10 nm (73). Mammalian hair cells are used in both audition and vestibular sensation, with 
some modifications. Auditory hair cells can resolve displacements down to 0.3 nm and at 101 
to 102 µm is size, this gives a threshold sensitivity of ~10-5 strain (155). However, Brownian 
motion at these scales is often ~1–3 nm (156) so the actual limit may be thermodynamic at 
~10-4 strain. Most engineered strain sensors can achieve better threshold strain sensitivities 
from 10-8 to 10-11 but are often longer in absolute size by design in order to achieve this (157). 
So, the absolute threshold in both cases may again be down to biophysical limits of thermal 
noise. 
 

 Mechanosensor threshold strain sensitivity [(strain)] 

Cockroach campaniform sensilla 1E-03 

Guinea Pig hair cells 1E-05 

Engineered strain sensors 1E-11 to 1E-08 

Table S32. Biological and engineered mechanosensor threshold sensitivity. 

Number of sensors 

Our second metric is the number of sensors. This is a common sensor metric (sometimes 
reported as a density, for instance, pixels / cm2) and draws an important distinction between 
biological and engineered runners.  

Photoreceptors 

For vision, the number of sensors is just the number of photoreceptors in the eye. In 
invertebrate compound eyes, each facet is called an ommatidium (plural: ommatidia) and each 
has usually between 6–10 photoreceptors (71).  

 

 Number of photoreceptors [#] Explanation 

Biological: 

Cockroach 
Periplaneta americana (76) 1.4E4 

2000 ommatidia, 7 photoreceptors
per ommatidium 

Fly  
Drosophila melanogaster (158) 5.6E3 

700 ommatidia, 8 photoreceptors
per ommatidium 

Moth  
Paysandisia archon (159) 1.8E5 

20,000 ommatidia, 9
photoreceptors per ommatidium 

Feather-wing beetle 
Ptiliidae (160) ~4E2 

~50 ommatidia, 8 photoreceptors
per ommatidium 

Human 
Homo sapiens (155) 1E8  



Engineered: 

100 MP camera (engineering) 1E8 found in high-end smartphones 

Table S33. Biological and engineered number of photoreceptors. 

Mechanosensors 

Quantifying the total number of mechanosensors for animals is very species specific and in 
the case of mechanoreceptors it is unclear if the appropriate comparison point is all 
mechanosensors or only those thought to be used in proprioception. Such distinction is likely 
to be important for investigations of specific systems, but our broad point is captured by a very 
general comparison. 

 
Table S34. Biological and engineered number of mechanosensors. 

Perceptual threshold 

It is important to draw a distinction between the threshold sensitivity of the sensor and the 
behavioral or perceptual threshold, which is the smallest unit of input that an organism can 
perceive consciously (i.e. discriminate when asked) or respond to behaviorally. For vision, 
perceptual thresholds can still occur at the single photon level (162), but for 
mechanosensation, they are typically much higher than the threshold sensitivity (163). 
However, these perceptual limits are a consequence of the integration of sensing, control, and 
behavior rather than of fundamental limits on the sensors themselves. 
 

 Perceptual threshold about a limb joint [deg] 

Human elbow flexion (164) 1  

Locust scratching (165) < 10  

Table S35. Perceptual threshold about a limb joint in human and locust. 

  

 Number of mechanosensors [#] 

Insect campaniform sensilla (79) 1000 to 10,000 

Insect chrodontonal organs (79) Many with 100s of sensors per organ 

Insect other mechanosensitive hairs and sensilla (79) 100 to 10,000 

Human tactile receptors (77) 20,000 

Human muscle spindles (161) 5,000 

Angular encoders (engineering) < 100; typically equals # of degrees-of-freedom 



Control subsystem performance 
Since control consists of transmission and transformation of signals, we compare the 
communication channels and computational elements available to animals and robots. 

Communication 

Our goal is to quantify the bandwidth and latency of communication channels found in nervous 
systems and computer networks of runners. Before quantitatively comparing these metrics, 
we motivate their definition using fundamental performance constraints in control systems. 

Data-rate Theorems 

Latency and bandwidth constrain control system performance via data-rate Theorems (85) by 
placing lower bounds on the steady-state error that can be achieved by any controller.  
 
Consider the discrete-time linear time-invariant system, 

𝑥ା ൌ 𝐴 𝑥  𝐵 𝑢. 
Since stable modes do not need to be stabilized by feedback, we assume without loss of 
generality that a change-of-coordinates has been applied to extract only the unstable modes 
for consideration, so all eigenvalues of 𝐴 have magnitudes larger than 1. 
 
Define the intrinsic entropy rate H 

𝐻 ൌ 𝑙𝑜𝑔2|  𝑑𝑒𝑡 𝐴 |. 
Note that 𝐻  0 since all eigenvalues of 𝐴 have magnitude larger than 1 and the determinant 
of a matrix equals the product of its eigenvalues. 
 
Theorem 1 and Proposition 1 in (85) tell us that: 

● if the bandwidth 𝑅, measured in units of bits per sample, is smaller than the intrinsic 
entropy rate, so 𝑅 ൏ 𝐻, then the system cannot be stabilized; 

● if 𝑅  𝐻  0 and the communication channel has latency (i.e. delay) 𝐿  0, measured 
in units of samples, then the norm of the steady-state error is lower-bounded by a 
function that increases without bound as 𝑅 and 𝐿 increase. 

 
These theoretical results comport with the intuition that a controller can perform better when 
more information (measured by 𝑅) is available more quickly (measured by 𝐿). Importantly, 
these performance constraints apply regardless of how the controller is implemented, so we 
compare bandwidth and latency of communication channels implemented in nervous systems 
and computer networks. 

Application of data-rate Theorems 

Consider the dynamics of an inverted pendulum, 

𝑚 𝑙2𝑞ሷ ൌ 𝑚 𝑔 𝑙 𝑠𝑖𝑛 ሺ𝑞ሻ  𝑢, 
where: 

● 𝑚 is the pendulum mass; 
● 𝑙 is the pendulum length; 
● 𝑔 is the acceleration due to gravity; 
● 𝑞 is the pendulum angle, 𝑞ሶ  its velocity, 𝑞ሷ  its acceleration; and 



● 𝑢 is the control torque applied to the pendulum. 
 
Since runners must be capable of maintaining an upright posture, stabilization of an inverted 
pendulum defined by the runner's mass and leg length is a simple representative control 
problem solved by a nervous system or computer network in a runner. 
 
By time-discretizing the pendulum dynamics with sampling interval d and linearizing about the 
vertical equilibrium point, the intrinsic entropy rate can be shown to be 

𝐻 ൌ𝑙𝑜𝑔2 ሺ1  𝑑 ඥ𝑔/𝑙 ሻ. 

Note that this expression decreases as the natural frequency ඥ𝑔/𝑙  of the pendulum increases.  

This finding comports with intuition, as larger runners have more time to correct for errors 
before they hit the ground, so less bandwidth is required to attain the same steady-state error 

(166). We normalize latency and bandwidth by the natural period ඥ𝑙/𝑔  to obtain 

dimensionless quantities for comparison across scales. 
 

 Leg length [m] Natural period [sec] 

Cockroach 0.02 0.284 

Cat 0.25 1.003 

Human 1 2.006 

Table S36. Leg length and natural period of cockroach, cat, and human. 

Specific bandwidth 

The maximum bandwidth of a single axon is 1 kilobit per second; this bound has been posited 
theoretically (167) and measured empirically (168). Although the length of axons that approach 
this upper bound is generally much shorter than a cat’s or human's leg length, this upper 
bound suffices for comparison with computer networks. 
 
EtherCAT (IEC 61158) (169) is a standardized communication protocol for control systems 
that runs on CAT 5 Ethernet cables. This standard can update 100 servo axes with 16 bit 
precision every 100 microseconds for cable lengths up to 100 meters. 
 
InfiniBand (170) is a proprietary communication protocol and medium for computer clusters 
that uses copper wires with lengths ranging from 0.5 to 1 meter and transmits data at up to 
100 gigabits per second. 
 
Many axons can be bundled into a single nerve, yielding a communication channel whose 
bandwidth theoretically scales linearly with the number of axons.  However, the cross-sectional 
area of the channel also scales linearly with the number of axons, so we normalize bandwidth 
by cross-sectional area. 
 
Axon diameters range from 0.2 to 20 micrometers in mammals (171, 172), and there are 
theoretical reasons to believe smaller sizes are not practical (173), leading to a range of cross-
sectional areas. 
 



Ethernet wires range from 22 to 28 AWG, corresponding to diameters of roughly 0.5 mm, and 
the outer cable diameter is roughly 5mm. 
 
Infiniband has 0.25 mm wires and roughly 10mm cable diameters. 
 
To obtain a single representative diameter for subsequent calculations, we average these 
extremes. Since many orders of magnitude will separate the performance of a computer 
network from that of an axon, this choice does not influence the outcome of the comparison. 
 

 Diameter [micrometer] 

 lower bound upper bound representative 

Axon 0.2 20 10.1 

EtherCAT 500 5000 2750 

InfiniBand 250 10000 5125 

Table S37. Diameter of axon, EtherCAT cable, and InfiniBand cable. 
 

 Area-and-period-specific bandwidth [bit / m2] 

Axon 2.50E+13 

EtherCAT 5.40E+12 

InfiniBand 9.72E+15 

Table S38. Area-and-period-specific bandwidth of axon, EtherCAT cable, and 
InfiniBand cable. 
 
As a sanity-check for our rough calculations, we note that (86) estimates a bandwidth of 
approximately 10 megabits per second for the human retinal nerve, which has a 5 mm 
diameter (174), corresponding to an area-specific bandwidth of 5.09E+11. 
 
This figure is lower than our estimate, but that outcome is unsurprising since we gave axons 
the advantage at every stage of the preceding calculation: we used the maximum theoretical 
bandwidth and didn't account for the adipose tissue (myelin) that insulates nerves, which can 
take up a substantial fraction of a nerve's area as summarized in Table B.1 of (175). 
 
We find that a nerve (axon bundle) may theoretically outperform EtherCAT whereas having 
the same cross-sectional area, but there are faster communication protocols like InfiniBand 
that outperform the nervous system by two or more orders of magnitude. 

Specific latency 

Axonal conduction velocity is theoretically proportional to axon diameter; experimentally, 
conduction velocities top out at 120 m / sec for the myelinated nerves of terrestrial mammals 
(176, 177) and 4 m / sec for the unmyelinated nerves of insects (178). Since latency is equal 
to distance divided by conduction velocity, signals transmitted the length of a runner's leg are 
delayed by more than a millisecond. 
 



EtherCAT can update 100 servo axes every 100 microseconds for cable lengths up to 100 
meters. 
 
InfiniBand latency is 1.3 microseconds for cables up to 1 or 2 meters. 
 

 Period-specific latency of communication [(none)] Notes 

Biological: 

Cockroach 1.76E-02  

Cat 2.08E-03  

Human 4.15E-03  

Engineered: 

EtherCAT 3.52E-04 scale-invariant; cockroach natural 
period used to get worst-case value 

InfiniBand 4.58E-06 

Table S39. Period-specific latency of communication for axon, EtherCAT cable, and 
InfiniBand cable at cockroach, cat, and human length scales. 
 
We find that EtherCAT may outperform axons by an order of magnitude in time required to 
transmit a signal the length of a runner's leg, and InfiniBand is hundred times faster still. It is 
impractical for animals to approach the latencies of computer network protocols, since doing 
so would require scaling up axon diameters by multiple orders of magnitude (87, 177), which 
would not fit inside legs. 

Computation 

Our goal is to quantify the complexity of computations that can be performed in runners and 
the time required for the computation. 
 
Intuitively, a controller's computation consists of transforming sensor signals to actuator 
signals. Mathematically, this transformation is a function. It is not clear what specific function 
or class of functions are necessary for high-performance running – all we have is the proof-of-
concepts in animals, whose transformations are implemented in (biological) neural networks. 
 
Robots have access to artificial and spiking neural networks in neuromorphic integrated 
circuits (179) as well as the fundamentally different von Neumann architecture (180). It is 
conceivable that digital computers based on von Neumann architectures could meet or exceed 
the performance of animals' neural networks in their implementation of effective controllers, 
but in the absence of robots that are better at running than animals, we focus on the most 
direct comparison between natural and artificial spiking neural networks. 
 
As a brief aside, it is worth noting that the von Neumann architecture is inefficient at 
"simulating" a spiking neural network – a supercomputer simulation of a leaky integrate-and-
fire network on the scale of the human cerebellum required 82,944 von Neumann CPUs and 
ran six hundred times slower than realtime (181). 
 



We are thus motivated to compare natural and artificial neural networks: on the one hand 
because they are the only option for general-purpose computation in the nervous system; and 
on the other because they are capable of solving complex optimization problems (88) and they 
are universal approximators (182) – any function can be approximated to any desired degree 
of accuracy by a network with a sufficiently large number of "neurons" (termed units) and 
"synapses" (the weighted connections between units). 
 
We will not consider neural network architecture here for two reasons. First, feedforward 
neural networks with only one "hidden" layer have the "universal approximation" property, so 
there is no theoretical advantage in terms of the complexity of transformations that can be 
represented by considering deep networks (183). Second, there appear to be no practical 
constraints on the architecture that can be implemented in neuromorphic circuits, so if a 
particular network were discovered that solved a control problem particularly well, current 
design and fabrication technologies ought to be able to reproduce the circuit in silicon, so long 
as a sufficient number of units and connections were available in the integrated circuit. 
 
Instead, we will focus on the number of units and connections that can be implemented in a 
runner's neural network, since these counts place limits on the space of transformations 
available to the runner. But we first repeat our analysis of latency to confirm a similar 
separation in performance holds between engineered and biological networks. 

Specific latency 

In a feedforward neural network, a "computation" is performed when a vector of inputs is 
transformed to a vector of outputs. This process does not occur instantly and is instead 
proportional to the latency or characteristic time constant of the network's units (88). This 
latency is on the order of milliseconds for natural neurons (88) and can be shorter than 
microseconds for artificial neurons (89). 
 

 Period-specific latency of computation [(none)] 

Biological: 

Cockroach scale 3.52E-03 

Cat scale 9.97E-04 

Human scale 4.98E-04 

Engineered: 

Cockroach scale 3.52E-06 

Cat scale 9.97E-07 

Human scale 4.98E-07 

Table S40. Period-specific latency of computation for axon, EtherCAT cable, and 
InfiniBand cable. 
 
We find, perhaps unsurprisingly, that artificial units in specialized integrated circuits can be 
activated several orders of magnitude faster than biological neurons. Decades of intensive 
research and development into the design and fabrication of integrated circuits by the 



semiconductor industry has yielded engineered units that dramatically outperform their 
biological counterparts in this regard. 

Number of neurons and synapses in a spiking neural network 

Neuromorphic integrated circuits are undergoing something of a renaissance in recent years, 
motivated in part by the impressive performance of large-scale neural network architectures 
on machine learning challenges in perception, language, and control. 
 
Industry research labs have created chips with the largest numbers: IBM's TrueNorth (184), 
which has an area of 430 mm2, has 1e6 neurons and 2.56e8 synapses. Intel's Loihi (185), 
which has an area of 60 mm2, has 1.3e5 "leaky integrate-and-fire" (LIF) neurons and 2e6 1-
bit synapses. 
 
The numbers have been more modest in academic research labs, with Tianjic (89) having an 
area of 14.4 mm^2 containing 4e4 neurons and 1e7 synapses. But Tianjic was notably used 
to control an autonomous robot (electric bicycle), whereas applications of the industrial chips 
have focused on more general-purpose machine learning tasks (186, 187). 
 
In stark contrast, animal nervous systems have staggering numbers of neurons and synapses: 
cockroach nervous systems have 1e6 neurons and 1e10 synapses on a characteristic length 
scale of 0.5 mm (188); cat brains have 7.6e8 neurons and 1e13 synapses, and the largest 
linear dimension of the brain is 50 mm; human brains have 8.6e10 neurons and 1e15 
synapses, and the largest linear dimension of the brain is 150 mm. 
 

 Neurons [#] Synapses [#] 
Length scale 
[mm] 

Neurons 
[words] 

Synapses 
[words] 

Biological: 

Cockroach 1.00E+06 1.00E+10 0.5 1 million 10 billion 

Cat 7.60E+08 1.00E+13 50 760 million 10 trillion 

Human 8.60E+10 1.00E+15 150 86 billion 1,000 trillion 

Engineered: 

Tianjic 4.00E+04 1.00E+07 4 40 thousand 10 million 

Loihi 1.30E+05 1.26E+08 8 130 thousand 126 million 

TrueNorth 1.00E+06 2.56E+08 21 1 million 256 million 

Supercomputer 6.80E+10 5.40E+12 100,000 68 billion 10 trillion 

Table S41. Number of neural units and synaptic connections in biological and 
engineered spiking neural networks. 
 
We find support for the colloquial understanding of animal brains being remarkable computing 
machines relative to integrated circuits, specifically in terms of the complexity of 
transformations that can theoretically be implemented. But in conclusion, we recall the obvious 
fact that animal brains are used for a staggering variety of tasks beyond sensorimotor control, 
so it is unclear how much brain is needed to achieve high performance in any particular task 



like running. There are many competing theories for whether and why bigger brains are better 
(91). One observation is that primate brain size correlates with social network size (189), 
motivating the "social brain hypothesis" (190) that bigger brains evolved primarily in service of 
interactions with others, rather than to increase proficiency in tasks like locomotion that much 
smaller brains perform extremely well. 
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