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Supplementary Text 

Stiffness measurements: 
After anesthetizing in a refrigerator, moths were prepared for materials testing by removing their 
wings, legs, head, and abdomen. The metathorax does not deform substantially during flight and 
likely stores insignificant elastic energy compared to the scutum [1]. Thus, it was removed to 
fully expose the posterior phragma. Waxy cuticle was gently filed off from the scutum and 
phragma to support better glue adhesion. Finally, the thoracic ganglion and thoracic musculature 
were severed to prevent spontaneous muscle contractions from transferring appreciable force to 
the force sensor. 

A custom 3D printed mount was secured to the anterior muscle attachment surface on the 
scutum with cyanoacrylate glue. The scutum mount was rigidly attached to the drive shaft of an 
electrodynamic shaker (The Modal Shop 2007E). A #2 threaded rod was glued to the posterior 
phragma and was screwed into the insert of a piezoelectric force transducer (PCB Piezotronics 
209C11). The force transducer was attached to a micromanipulator, giving us precise control 
over the thorax’s rest length. We defined rest length as the length at which no force was 
measured by the transducer. Importantly, we aligned the thorax such that deformations occurred 
along the axis that the downstroke muscle would contract in the live animal (Fig. 1a). A fiber-
optic displacement sensor (Philtec D47) was used to measure displacement from a strip of 
reflective tape attached to the shaker drive shaft. The displacement sensor was used only in its 
linear range and was calibrated daily immediately prior to mounting the first specimen. We 
prescribed a sine chirp displacement signal from 1-100 Hz at 9% peak-to-peak strain amplitude 
[2]. The same thorax strain amplitude was used for all species since species-specific strain data 
could not be analyzed prior to performing stiffness measurements. We do not consider 
contributions of active muscle stiffness which are relatively small in hawkmoths compared to 
exoskeletal stiffness [3,4]. Recent work on the thorax of Manduca sexta has demonstrated that 
stiffness and material damping in the thorax are frequency-independent [1,5]. As such, we ignore 
internal damping in resonance calculations, as it does not affect the location of the resonant peak, 
and we use the stiffness measured at wingbeat frequency as the thorax stiffness for each species. 
Our sign convention is such that positive force is generated in the shortening direction. 
 
Muscle strain measurements: 
Moths were anaesthetized in a refrigerator, tethered ventrally, and positioned beneath a high-
speed video camera (Photron FastCam mini UX100). The moth's abdomen was removed and the 
middle part of the metathorax was partially dissected away, exposing the posterior phragma, the 
attachment point for the main downstroke muscles (DLMs). Scales were removed from the 
anterior scutum, and a white paint pen was used to mark muscle attachment points on each side 
of the animal. The moth was stimulated to flap by gentle tactile stimulation on the back of its 
neck. After a flapping bout, the camera was moved to capture wingbeats from the front of the 
animal, so that wingbeat amplitude could be measured. The order of recording head-on and top-
down angles was randomized from individual to individual to ensure moths were not excessively 
fatigued during a particular filming angle. White markers and wing tips were digitized in 
DLTdV8 over multiple wingbeats [6]. We define a sign convention such that positive strain is 
shortening. 

In general, we found that tethered moths flapped with wingbeats that were larger in 
amplitude than those in free-flight [7], likely because of the highly invasive procedure necessary 
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to expose the posterior phragma and stress due to tethering. To ensure that strain and 
transmission calculations were not affected by these inflated amplitudes, we computed 
transmission ratio 𝑇 directly from the phragma displacement 𝑑!"#	and front-view wingstroke 
amplitude 𝜙$%$&%'%( measurements in each moth individually.  
 

𝑇 =
𝜙$%$&%'%(
𝑑!"#

					(1) 

 
Computing transmission ratio in this way using maximum wingbeat amplitude and maximum 
strain from the same individual ensure that any inflated wingbeat amplitude is matched by an 
inflated thorax strain. For a linear and frequency-independent transmission, this will result in an 
accurate estimation of the transmission ratio. In Manduca, we confirmed that the transmission of 
the wing hinge is linear by recording wingbeats with a time-synchronized two-camera setup (Fig. 
S1). Plotting wing angle as a function of thorax displacement results in an ellipse, indicating that 
a linear transmission is likely an appropriate assumption for this group of animals. We defined 
the operating length 𝐿)* of the thorax as the mean strain across all digitized wingbeats. We then 
used 𝑇, 𝐿)*	and free-flight wingbeat amplitude 𝜙) to calculate a muscle strain likely to be 
generated in free-flight by the following equation: 
 

𝜀 = 	
𝜙)
𝑇𝐿)*

					(2) 

 
 Results of our method for Manduca result in a transmission ratio in rough agreement to previous 
calculations using data from a different study of muscle length changes in a tethered animal 
[2,3]. For analysis of strain and transmission data, each flight bout from an individual was 
considered a separate trial. Data was collected from at least three different individuals of each 
species and was pooled for species-averaged analysis.  
 
Wing inertia and aerodynamic damping calculation: 
We leveraged an existing wing morphometric dataset to calculate inertial and aerodynamic 
parameters for each moth species [8]. Specific imaging and digitization methods are identical to 
those in Aiello et al. 2021. For Hyalophora cecropia, Hemaris diffinis, Smerinthus cerisyi, and 
Sphinx chersis, we utilized wing shape data from a species in the same genus: Hyalophora 
euryalus, Hemaris thetis and Hemaris thysbe, Smerinthus ophthalmica and Smerinthus 
jamaicensis, and Sphinx kalmiae. In the above cases, distinctions in wing morphology between 
species in the same genus were minimal and should not meaningfully affect our results. We 
compute inertia of the wing pair and added air mass from Eq. 3 [9], where 𝑚+ is the mass of the 
wing pair, 𝑅 is wing length, 𝑟,/(𝑠) is the second moment of wing shape, 𝜈 is the added mass, and 
𝑟,/(𝜈) is the second moment of added mass (see Table S3 for a complete glossary of symbols). In 
the absence of wing mass distribution measurements across species, we assume, as Weis-Fogh 
did, that wing thickness is constant, therefore the second moment of mass can be approximated 
by the second moment of wing area [7,10,11].  
 

𝐼 = 𝑚+𝑅,𝑟,/
,(𝑠) + 𝜈𝑅,𝑟,/

,(𝜈)				(3) 
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𝜈 was computed from the following equation where 𝜈̂ is the non-dimensional added mass, 𝜌 is 
the air density, and 𝐴- is the aspect ratio. 

𝜈 =
2𝜌𝜋𝜈̂𝑅.

𝐴-,
					(4) 

 
The parameters in Eq. 3 consider the fore- and hindwings moving together as a combined 
surface, incorporating inter-clade differences in relative fore- and hindwing area [8]. While 
lepidopteran flight is primarily driven by the forewing, hindwings play an important role in 
maneuverability, and may contribute significant mass, especially in silkmoths [12].  

We utilized a constant quasi-static aerodynamic damping model with velocity-squared 
damping, such that the aerodynamic force over a wing stroke is equal to Γ;𝜙̇;𝜙̇. This simplified 
representation of flapping-wing aerodynamics has been used previously to model moth resonant 
mechanics and its functional form allows for derivation of analytical results that would be 
impossible with more complex models [3,10,13–15]. The aerodynamic damping parameter Γis 
computed by the following equation [13], where 𝐶/ is the average wing drag coefficient, 𝐴+ is 
the area of the wing pair, and 𝑙0* is the non-dimensional location of the center of pressure. 
 

Γ =
1
2𝜌𝐶/𝐴+𝑟,/

,(𝑠)𝑅.𝑙0*					(5) 
 
𝐶/ was computed for each species using eq. 3.2 of Han et al. 2015, averaged over the wing 
stroke using angle-of-attack data from free-flight kinematics for each species [16]. A constant 𝑙0* 
of 0.6 was used for all species [13], and is widely representative of insect wing centers of 
pressure across taxa [9]. 
 
 
Calculation of Weis-Fogh number from flight power: The Weis-Fogh number (N) was originally 
defined as the ratio of peak aerodynamic and inertial torques over a wingstroke [1]. 

𝑁 =
max(𝜏12%'$1"3)
max(𝜏"%'))

=
𝐼
Γϕ4

					(6) 

While estimates of N using this equation are reasonably accurate when one knows all required 
information for an insect of interest, it can be challenging to apply Eq. 6 comparatively. Either 
one must know peak torques from a model (preferably one that incorporates 3D kinematics 
and/or computational fluid dynamics), or one must know species-specific average drag 
coefficients and locations of the center of pressure on the wing. Peak torque estimates are not 
widely reported and wind-tunnel drag coefficient data for many species is not available.
 Instead, we use more commonly reported mean cycle-averaged aerodynamic (𝑃H"%')) and 
inertial powers (𝑃H12%'$1"3) to compute N. We derive an expression for N that depends on the ratio 
of these powers using the equation of motion in the main text (main text Eq. 1). Then, we use 
power estimates for each species from a recent blade-element model that incorporates species-
specific wingbeat kinematics to estimate N comparatively.  
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 First, we compute average inertial and aerodynamic power from main text Eq. 1, by 
integrating the instantaneous power, defined as torque multiplied by angular velocity. Our 
integration bounds will be the first quarter-stroke (t=0 to t=𝜋/2𝜔), since this is the region during 
which both aerodynamic and inertial powers are positive. Since we seek the ratio of the mean 
absolute value of these powers, the result for a quarter stroke will be identical to that for a full 
stroke and much easier to compute. The inertial power can be written as the following, where 
𝜔 = 2𝜋𝑓+5: 

𝑃H12%'$1"3 =
𝜋
2𝜔L 𝐼𝜙̈(𝑡)𝜙̇(𝑡)𝑑𝑡 =

𝐼𝜙),𝜔.𝜋
2𝜔 L sin(2𝜔𝑡) 𝑑𝑡 =

1
2 𝐼𝜙)

,𝜔,
6/,8

9
					(7)

6/,8
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The aerodynamic power can be written as: 

𝑃H"%') =
𝜋
2𝜔L Γ;𝜙̇(𝑡); S𝜙̇(𝑡)T

,
𝑑𝑡

6/,8

9

=
Γ𝜙).𝜔.𝜋
2𝜔 L cos,(𝜔𝑡)|cos	(𝜔𝑡)| 𝑑𝑡 =

2
3 Γ𝜙)

.𝜔,					(8)
6/,8

9
 

Taking the ratio of Eqs. 7 and 8 and substituting in Eq. 6, we arrive at the final expression for N 
in terms of 𝑃H12%'$1"3 and 𝑃H"%'). 

𝑁 =
4
3
𝑃H12%'$1"3
𝑃H"%')

					(9) 

𝑃H12%'$1"3 	and 𝑃H"%')	are then computed for each species using the same model of Aiello et al. 2021 
[2]. Aerodynamic power includes contributions from induced, profile, and parasitic power. See 
the citation and citation supplement for details. 
Calculation of aerodynamic efficiency: As discussed in the main text, we derive a new 
aerodynamic efficiency metric that applies to flapping insects that are not necessarily flapping at 
resonance. We do this by following the original logic of Weis-Fogh, defining efficiency as the 
ratio of positive aerodynamic work over a cycle to total positive work (sum of inertial, 
aerodynamic, and elastic contributions). Following the work of Lynch et al. 2021 [3], we begin 
with the non-dimensional torques as a function of non-dimensional wing angle: 
 

𝜏̂"%')(𝑡) = 1 − S𝜙[(𝑡)T
,
					(10) 

𝜏̂12%'$1"3(𝑡) = −𝑁𝜙[(𝑡)					(11) 
𝜏̂%3":$10(𝑡) = 𝐾̂𝑁𝜙[(𝑡)					(12) 

 
Aerodynamic efficiency is then defined by the following integral expression, where bounds of 
integration are chosen to ensure only positive work is being considered. 
 

𝜂 = (100)
∫ 𝜏̂"%')(𝑡)𝑑𝜙[;

∫ 𝜏̂"%')(𝑡) + 𝜏̂12%'$1"3(𝑡) + 𝜏̂%3":$10(𝑡)𝑑𝜙[;
					(13) 
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From here on, 𝜏̂ and 𝜙[ are implied to be functions of t for ease of notation. Since 𝜏̂"%') is 
nonnegative over the domain 𝜙[ ∈ [−1,1] we can integrate Eq. 10 directly over this domain: 
 

L e1 − 𝜙[,f𝑑𝜙[ =
4
3					(14)

<

=<
 

Note that if 𝜏̂12%'$1"3 = 𝜏̂%3":$10 ,	efficiency is always 100%, which is the case when the insect is 
flapping at undamped resonance, 𝐾̂ = 1. So, the denominator integral can be decomposed into 
two cases: when 𝐾̂ < 1, and when 𝐾̂ > 1. In each of these cases, the sum of inertial, elastic, and 
aerodynamic torques is not positive across the whole domain of integration. We can compute the 
𝝓̂ where the sum of torques crosses zero by finding the zeros of the following two quadratic 
equations for the 𝑲̂ < 𝟏 and 𝑲̂ > 𝟏 conditions respectively: 

1 − 𝜙[, + 𝑁e1 − 𝐾̂f𝜙[ = 0				(15) 

1 − 𝜙[, + 𝑁e𝐾̂ − 1f𝜙[ = 0				(16) 

If we call the zeros of these equations 𝜙[>?@<
∗  and 𝜙[>?B<

∗ , we can express the denominator of Eq. 13 
piecewise by the following two integrals: 

∫ 𝜏̂"%')(𝑡) + 𝜏̂12%'$1"3(𝑡) + 𝜏̂%3":$10(𝑡)𝑑𝜙[ = l
∫ 1 − 𝜙[, + 𝑁e1 − 𝐾̂f𝜙[𝑑𝜙[C?!"#$

∗

< 𝑖𝑓	𝐾̂ < 1

∫ 1 − 𝜙[, + 𝑁e𝐾̂ − 1f𝜙[𝑑𝜙[<
C?!"&$
∗ 𝑖𝑓	𝐾̂ > 1

n;  (17) 

Combining the result of Eq. 14 with Eq. 17, one can easily compute 𝜂 from Eq. 13 with a 
computer algebra program like Mathematica. 

Structural damping impacts on resonance: Dissipation in the hawkmoth thorax has been 
demonstrated to be frequency-independent, structural damping. We do not consider structural 
damping in our resonance calculations because it does not meaningfully impact the location of 
the damped or undamped resonance peak. We demonstrate this in Fig. S3, simulating the 
displacement and velocity resonance curves for Manduca sexta, using a structural damping 
factor 𝛾 = 0.15 [1,5]. Realistic structural damping changes the resonant frequencies by less than 
0.5 Hz, thus it is likely negligible for the current study. We implement the structural damping 
simulation using the ‘equivalent viscous damper’ method described in Wold et al. 2023. We also 
suggest Gau et al. 2019 and Lynch et al. 2021 for more detailed work on the impacts of structural 
damping for flapping flight. 
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Figure S1: Measurement of spring-wing thorax parameters. a). Free-body diagram of 
generalized spring-wing model showing the geometry of the actuating muscles, thoracic 
spring, transmission, and inertial wing. b). Schematic of the experimental apparatus used to 
measure thorax stiffness, consisting of an electrodynamic shaker, fiber-optic displacement 
sensor, and piezoelectric force transducer. c). Schematic of a moth filmed from above on a 
tether, with inset photographs showing the DLM attachment points at maximum and 
minimum strain. d). Average wing stroke angle as a function of thorax strain in one 
representative Manduca individual. The transmission ratio (slope of the ellipse denoted by 
dashed line) does not deviate substantially from linearity over a wing stroke. 
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Figure S2: Aerodynamic efficiency above and below resonance. A). Non-dimensional 
torques as a function of wing angle in the above-resonance case, with the integration bound 
𝜙[∗ notated. B). Non-dimensional torques as a function of wing angle in the below-
resonance case, with the integration bound 𝜙[∗ notated. Shaded blue and black areas 
correspond to aerodynamic work and total positive work respectively. 
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Figure S3: Effects of internal damping on resonance. Simulated displacement and 
velocity resonance curves for Manduca sexta, with and without structural damping (s.d.). 
A representative structural damping factor of 0.15 was used in simulation. 
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Table S1. Wing shape parameters. All data necessary to compute inertia and aerodynamic 
damping parameter for each species, as well as free-flight wingbeat frequency and free-flight 
peak-to-peak wingbeat amplitude. Unitless quantities unless otherwise specified. 

 

 

 

Species 𝒓r𝟐(𝒔) 𝒎𝒘 
(g, 
both 
wings) 

𝑹 (m) 𝒓r𝟐(𝝂) 𝑨𝑹, 
both 
wings 

𝝂r  𝑨𝒘 (m2, 
both 
wings) 

𝑪𝑫 𝒇𝒘𝒃, 
Hz 

𝟐𝝓𝒐 
, deg 

Automeris 
io 0.506 0.0452 0.0326 0.4712 3.1854 1.18 0.001346 0.4 22 129 

Hyalophora 
cecropia 0.492 0.1322 0.0596 0.4373 3.5178 1.17 0.00406 1.3 13 110 

Smerinthus 
cerisyi 0.504 0.0354 0.0366 0.4586 4.9164 1.12 0.001128 1.2 33 105 

Sphinx 
chersis 0.516 0.0436 0.045 0.4783 6.5784 1.08 0.001252 1.1 31 88 

Hemaris 
diffinis 0.524 0.0084 0.0199 0.4898 6.6964 1.08 0.000248 2.6 62 91 

Hyles 
lineata 0.497 0.0328 0.0374 0.4448 5.7654 1.1 0.000974 1.5 35 117 

Actias luna 0.486 0.1172 0.0518 0.4296 3.2842 1.2 0.00331 0.4 14 130 

Manduca 
sexta 0.53 0.061 0.0528 0.482 6.637 1.08 0.001678 1.5 25 117 

Antheraea 
polyphemus 0.502 0.162 0.066 0.4537 4.1396 1.18 0.004232 0.7 10 134 

Citheronia 
regalis 0.484 0.125 0.0612 0.4376 3.8138 1.17 0.0028 0.6 15 132 
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Quantity Dimensions Slope 𝑟, p-value PGLS 

slope 
PGLS 
𝑟, 

PGLS p-
value 

√𝑘 N0.5m-0.5 0.003 <0.01 0.971 -0.054 0.037 0.595 
𝜀 % -0.338 0.624 0.007* -0.338 0.624 0.007* 
𝑇 rad m-1 63.723 0.850 <0.001* 67.852 0.836 <0.001* 

log<9(𝐼) kg m2 -0.047 0.925 <0.001* -0.047 0.925 <0.001* 
𝑘')$ Nm rad-2 -2.299e-5 0.442 0.036* -2.299e-5 0.442 0.036* 
𝐾̂ Unitless -0.009 0.240 0.151 -0.009 0.240 0.151 
𝑓2"$	 Hz 0.607 0.890 <0.001* 0.701 0.887 <0.001* 
𝑓'%: Hz 0.417 0.629 0.006* 0.418 0.635 0.006* 

 
 
 
 
 
 
 
 
 

Table S2: Regression statistics. Regression and PGLS slopes and 𝑟, values for each quantity 
in main text Figs. 3-5 plotted against wingbeat frequency. 
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Table S3: Symbol glossary 
 
 

Symbol Quantity Dimensions 
𝐴' Aspect ratio (both wing pairs) Unitless 
𝐴( Wing area (both wing pairs) m2 

𝐶) Average drag coefficient Unitless 
𝑑*+, Maximum thorax displacement m 
𝐹 Muscle force amplitude N 
𝑓-+. Natural frequency Hz 
𝑓/01 Resonance frequency Hz 
𝑓(2 Wingbeat frequency Hz 
𝐼 Wing inertia kg m2 

𝐾( Inertial power offset Unitless 
𝑘 Thorax stiffness N/m 
𝑙34 Location of center-of-pressure Unitless 
𝑚( Wing mass (both wing pairs) kg 
𝑁 Weis-Fogh Number Unitless 
𝑃.+33 Wingstroke-averaged inertial power W 
𝑃.+0/5 Wingstroke-averaged aerodynamic power W 
𝑅 Wing length m 

𝑟61(𝑠) Second moment of wing shape Unitless 
𝑟61(𝜈) Second moment of added mass Unitless 
𝑇 Transmission ratio rad/m 
Γ Aerodynamic damping parameter kg rad m2 

𝜀 Thorax strain Unitless 
𝜂 Aerodynamic efficiency Unitless 
𝜈 Added mass kg 
𝜈̂ Nondimensional added mass Unitless 
𝜌 Air density kg/m3 

𝜙5 Free-flight wingbeat amplitude rad 
𝜙.0.70/08 Tethered wingbeat amplitude rad 

𝜙= Nondimensional wing angle Unitless 
𝜏̂+0/5 Nondimensional aerodynamic torque Unitless 
𝜏̂9-0/.9+: Nondimensional inertial torque Unitless 
𝜏̂0:+1.93 Nondimensional elastic torque Unitless 


