
Supplementary information

0.1 Equation of motion
We began with the general equations of motion for velocity-squared damping during rotational
movement

Fm

T
= Iϕ̈(t) + Γ|ϕ̇(t)|ϕ̇(t) + kl

T 2
ϕ(t), (1)

where Fm is the force from flight muscles, I is wing inertia, Γ is the aerodynamic damping
parameter, kl is thoracic linear stiffness, and T is the transmission ratio.

0.2 Inertia
The term Iϕ̈(t) is an inertial term, parameterized by a lumped wing inertia I . Following the
derivations of (1), we calculate I as the sum of inertia due to wing mass (Iw) and added mass
(Ia):

Iw = r22(m)mwR
2, and Ia = vr22(v)R

2, (2)

The added mass (v) is defined as the following:

v =
2ρπv̂R3

A2
(3)

All terms are defined in Table 1.

0.3 Aerodynamic damping
The term Γ|ϕ̇(t)|ϕ̇(t) is an aerodynamic damping term, parameterized by a single aerodynamic
paramter Γ. We calculate this aerodynamic parameter by following the work of Whitney &
Wood (2). The quasi-steady drag force (FD) on insect wings over a single wingstroke can be
modeled as

FD =
1

2
ρC̃DAwr̂

2
2(s)R

2ϕ̇2. (4)
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Setting the drag torque τD = FDlcp and τD = Γϕ̇2, where lcp is the center of pressure (3),
yields the velocity-squared damping coefficient (Γ) as

Γ =
1

2
ρC̃DAwr̂

2
2(s)R

2lcp (5)

0.4 Thorax elasticity and the wing hinge
The term kl

T 2ϕ(t) is an elastic term, parameterized by a spring constant kl and a transmission
ratio T . We take the linear spring constant from (4), making a correction to account for the
contribution of active flight muscle. We calculate the active stiffness of the DLM from (5),
double it to account for potential contributions from the DVM as well, and add it to the thoracic
stiffness. This is possible because the flight muscle is in parallel with the thoracic spring. This
method likely overshoots the contribution of active muscle, therefore demonstrating that our
conclusion is robust to any reasonable active muscle stiffness.

The insect flight system converts a linear displacement of muscle and the thoracic spring to
a large, angular displacement of the wings. This is accomplished through the complex, three-
dimensional deformation of the wing hinge. Mathematically, we reduce the wing hinge to a
linear transmission parameterized by a single quantity T , which we term the transmission ratio
and define as the ratio of peak-to-peak wingstroke amplitude to peak-to-peak muscle displace-
ment amplitude. T is mathematically equivalent to the reciprocal of the length of the moment
arm through which the muscle acts on the wing, and therefore has units of m−1. We can take
muscle strain and wingstroke amplitude from the literature to make the following calculation

T =
ϕo

Xo

(6)

where ϕo is the peak-to-peak wingstroke amplitude and Xo is the peak-to-peak muscle dis-
placement amplitude. From here, we can equate the energy stored in the linear thoracic spring
and the overall rotational spring to solve for the rotational spring stiffness in terms of known
parameters.

klX
2
o = kτϕ

2
o (7)

Manipulating this equation algebraically and substituting in the definition of T , we arrive at
an expression for rotational stiffness as a function of linear stiffness and transmission ratio:

kτ =
kl
T 2

(8)

This rotational stiffness is the coefficient of ϕ(t) in the dynamics equation.
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0.5 Validation of model
As a simple step of validation, we calculate the ratio of peak elastic to peak inertial power using
our lumped parameters and compare it to previous estimates of elastic energy return in the
hawkmoth thorax. Peak elastic and inertial powers can be found by integrating the elastic and
inertial torques respectively over a half-stroke and multiplying it by the frequency of oscillation:

Pelastic = ω

∫ ϕo
2

0

k

T 2
ϕdϕ =

kϕ2
oω

8T 2
(9)

Pinertial = ω

∫ ϕo
2

0

Iω2ϕdϕ =
Iϕ2

oω
3

8
(10)

The ratio of these two quantities yields 37-58% depending on which value of thorax elas-
ticity is used (with without muscle), which is in agreement with previous estimates of thorax
elastic energy exchange (4). Therefore, our model quantitatively captures the dynamic contri-
butions of elasticity to spring-wing mechanics.

Pelastic

Pinertial

=
k

T 2Iω2
= 37− 58% (11)

0.6 Muscle forcing
The left-hand-side of the spring-wing equation is the muscle forcing term. We use a simple,
phenomenological model of muscle, modeling the force as a purely sinusoidal forcing with
amplitude Fo and frequency ω = 25 Hz, matching Manduca’s wingbeat frequency. Since the
units of this term must match torque units, we also divide by the transmission ratio, so the
complete left-hand-side is given by:

τm =
Fo

T
sin (ωt) (12)

As discussed in the maintext, we began with a Fo of 0.5 N, matching results from isolated
Manduca DLM work loop experiments (5). Due to the extremely low and unrealistic wingbeat
amplitudes that resulted, we increased Fo to an adjusted value of F ∗

o = 2.25 N, which resulted
in wingbeat amplitudes that match real Manduca data.

0.7 Numerical methods
To solve the equation of motion, we used Python’s differential equation solver solve ivp to
numerically calculate the emergent wingstroke amplitude ϕo over a range of frequencies from 1
to 50 Hz. At each frequency, we simulated wingbeats over a period of 3 seconds starting from
zero initial conditions. The emergent wingbeat amplitude was extracted from wingbeats only
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Table 1: Variable definitions and values
variable value description
kl 4078 ± 510 N m−1 (4, 5) thoracic stiffness with muscle
kthorax 2582 ± 510 N m−1 (4) thoracic stiffness
I 5.69± 0.34 E-8 kg m2 wing inertia
T 2230 ± 110 m−1 transmission ratio
Γ 3.69 ± 0.33 E-8 kg m2 damping coefficient
r2(m) 0.383 ± 0.003 (6) nondimensional 2nd moment of wing area
r2(v) 0.482 ± 0.001 (6) nondimensional 2nd moment of added mass
r2(s) 0.518 ± 0.001 (6) nondimensional 2nd moment of wing shape
mw 0.092 g (6) wing mass (both wings)
v̂ 1.08 (6) added mass
ρ 1.225 kg m−3 air density
Aw 1881 mm2 (6) wing area (both wings)
A 5.53 ± 0.04 (6) wing aspect ratio (both wings)
R 51 mm (6) wing length
C̃D 1.5 (3) drag coefficient
lcp 30.6 mm (3) aerodynamic center of pressure
ϕo 117 ± 6° (6) peak-to-peak wingstroke amp
Xo 0.46 ±0.02 mm (5) peak-to-peak muscle displacement amp
Fo 0.5 N (5) zero-to-peak muscle force amp
F ∗
o 2.25 N adjusted zero-to-peak muscle force amp

after steady-state has been reached. We then plot this amplitude as a function of frequency, and
find the frequency that resulted in the highest amplitude; this is the resonant frequency.

To run the sensitivity analysis, we modified one of our lumped parameters at a time so
they were their 0.5th percentile value and re-generated the resonance curve. We repeated this
process with the 99.5th percentile values for each parameter. To find the necessary parameter
values for resonance to be achieved, we varied each parameter one at a time and generated the
system resonance curve. We continued iterating this process until the resonant and wingbeat
frequencies matched, until the parameter hit zero, or we saw no further change in resonance
frequency by changing the parameter value.
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