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Abstract. Flying insects are thought to achieve energy-efficient flapping flight by

storing and releasing elastic energy in their muscles, tendons, and thorax. However,

“spring-wing” flight systems consisting of elastic elements coupled to nonlinear,

unsteady aerodynamic forces present possible challenges to generating stable and

responsive wing motions. The energetic efficiency from resonance in insect flight is

measured by the Weis-Fogh number (N), which is the ratio of peak inertial force to

aerodynamic force. In this paper, we present experiments and modeling to study how

resonance efficiency (which increases with N) influences the control responsiveness and

perturbation resistance of flapping wingbeats. In our first experiments, we provide a

step change in the input forcing amplitude to a series-elastic spring-wing system and

observe the response time of the wing amplitude increase. In our second experiments

we provide an external fluid flow directed at the flapping wing and study the perturbed

steady-state wing motion. We evaluate both experiments across Weis-Fogh numbers

from 1 < N < 10 . The results indicate that spring-wing systems designed for

maximum energetic efficiency also experience trade-offs in agility and stability as the

Weis-Fogh number increases. Our results demonstrate that energetic efficiency and

wing maneuverability are in conflict in resonant spring-wing systems suggesting that

mechanical resonance presents tradeoffs in insect flight control and stability.

Keywords: insect flight, resonance, dynamic scaling, elasticity, robophysics

Submitted to: Bioinspir. Biomim.

1. Introduction

Flapping flight is an extremely power-intensive mode of locomotion, requiring both

high frequency wingbeats and large forces to produce lift and perform agile maneuvers.
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Stability and Agility Trade-offs in Spring-Wing Systems 2

Flying insects achieve efficient flight through a combination of specialized flight muscles

[1] and elastic energy storage in the thorax [2, 3, 4]. The insect flight system can

thus be described as muscle actuation of an elastic structure which oscillates wings

to generate aerodynamic forces. We call this combination of elastic, inertial, and

aerodynamic mechanisms a “spring-wing” system [5]. While significant research focus

has been devoted to the aerodynamic force generation of flapping wings (see review in

[6]), relatively fewer studies have focused on understanding the implications of elastic

energy storage and return for flight dynamics and control [3, 7, 4, 8, 9, 10].

In the classic spring-mass-damper model, there exists a particular actuation

frequency which results in the largest amplitude oscillation of a mass, the so called

resonance frequency. In the performance considerations for a “spring-wing” system,

there exist several different resonant wingbeat frequencies at which different forms

of optimality (maximum amplitude, lift, or efficiency, for example) are achieved [11].

Operating at a resonant frequency that maximizes lift can enable significant performance

advantage, allowing insects to use smaller muscle force/power to generate lift for flight.

Indeed, roboticists designing insect-scale flapping robots have found that incorporating

elasticity and operating near resonance enables higher lift and greater payloads using

the same actuator design [12, 13, 8, 14, 15].

To classify the relative importance of resonance in spring-wing systems we have

previously introduced [5] the Weis-Fogh number (N), a dimensionless parameter that

describes the ratio between peak inertial and aerodynamic torques. The Weis-Fogh

number joins other important dimensionless parameters for flapping flight dynamics

including the Reynolds number, Rossby number, Strouhal number, Cauchy number,

and advance ratio [16, 17, 18]. The Weis-Fogh number has a mutual relationship with

the Cauchy number, which in fluid-structure interaction problems represents the ratio

of aerodynamic forces to elastic forces acting on a system. In the discussion we provide

an analysis of how the Weis-Fogh and Cauchy numbers are related. Previous work has

demonstrated that N governs how much energy can be recovered into the elastic system

of insects and robots on each wingstroke, and thus is a measure of resonant efficiency

for flapping wing systems [5]. However, stable and agile flight requires much more

than just steady-amplitude wing oscillations, prompting the question at hand: how do

spring-wing resonant dynamics impact other aspects of flight such as wingbeat control

and stability?

A spring-wing system flapping at a resonance frequency is advantageous because

the required power for flight is reduced. However, there are other trade-offs inherent

in operating at resonance that become important for wingbeat control and stability

that have not been fully considered in insect flight [19]. For example, when actuated

at the resonant frequency of maximum wingstroke amplitude, any control change to

the wingbeat frequency will result in a decrease in the wing amplitude and thus would

require more energy input per wingstroke to achieve lift [8, 20]. Thus, while resonance

can aid in energetic efficiency it can also limit the flapper’s ability to quickly change

wingstroke kinematics.
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Stability and Agility Trade-offs in Spring-Wing Systems 3

We hypothesize that the resonant behavior of a spring-wing system influences

the insect’s flapping dynamics in response to internal control changes and external

perturbations. We motivate this a simple thought experiment: Consider two insects

with similar wing shapes, but different total wing inertia. The insect with the larger

wing inertia would have to put more energy in to driving its wing to full amplitude

flapping motion. Thus, for a fixed amount of muscle force an insect with larger wing

inertia - and thus larger Weis-Fogh number N - would respond more sluggishly to an

amplitude control change than an insect with lower N . On the other hand, consider

if the insect is flying in a crosswind and needs to maintain its wingbeat amplitude to

maintain stable hovering. The crosswind is an aerodynamic perturbation that acts on

the wing and may cause the wing motion to deviate from steady-state if the aerodynamic

perturbation significantly overcomes the momentum of the wing motion. In the case

of aerodynamic perturbations, a higher N (where inertia dominates over aerodynamic

forces) would be less susceptible to wingstroke deviation. We hypothesize that the Weis-

Fogh number is a governing parameter of both wingbeat response timescale (increases

with N), and of susceptibility to aerodynamic perturbations (decreases with N). These

two performance metrics impact maneuverability and stability in competing ways, and

thus present a potential trade-off for spring-wing resonant flight.

In this study, we examine the effect that varying the Weis-Fogh number has on: 1)

the responsiveness of a flapping system to a step-change in control input, i.e. starting

from stop or changing amplitude, and 2) the oscillatory stability of a flapping wing

subjected to an asymmetrical aerodynamic perturbation. In the first section of this work

we describe the background and motivation of these hypotheses using an analytically

tractable (linear) version of the spring-wing system with a viscous damper in place of

aerodynamic drag. We present the results from two experiments on a dynamically-

scaled spring-wing robot that measure, respectively, the time it takes for systems with

different N to flap up to full amplitude and the ability of those systems to maintain

sinusoidal flapping kinematics in the presence of a constant flow perturbation. In the

last section we discuss the implications of these and prior results for the biomechanics of

insect flight systems and the design of flapping-wing micro aerial vehicles (FWMAVs).

2. A motivating example

In the following section, we introduce the Weis-Fogh number as a classification of spring-

wing resonance. We next motivate our study’s hypotheses by studying a linear spring-

mass system that is subjected to a step-response change in control force amplitude, or

a step-response perturbation to the damping force. Lastly, we provide a comparison

between the linear spring-mass system and the nonlinear spring-wing system.
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Stability and Agility Trade-offs in Spring-Wing Systems 4

2.1. The Weis-Fogh number governs spring-wing resonance dynamics

The Weis-Fogh number is named for Torkel Weis-Fogh, a pioneer in insect flight

biomechanics and discoverer of the elastic protein resilin [2, 10]. It is defined as the

ratio between maximum inertial and maximum aerodynamic torque during flapping.

Inertial torques are due to the acceleration of the mass of the wing and the surrounding

air (added mass or “virtual” inertia [21]) as the wing flaps, and the aerodynamic torques

are due to drag on the wing in the wing stroke plane:

N =
max (τinertia)

max (τaero)
(1)

If a spring-wing system has inertia I, aerodynamic drag coefficient Γ, and oscillates

sinusoidally with peak-to-peak amplitude θo, we can express the Weis-Fogh number as

N =
I

Γθ0
(2)

Weis-Fogh introduced this term as a part of an argument about the necessity of

elastic energy storage and return in the flight system of insects [3]. It expresses the

relative influence of inertial and aerodynamic effects on the dynamics of a flapping

wing; N < 1 means aerodynamic forces dominate, whereas N > 1 means that inertial

forces are dominant.

We found, through dimensional analysis and dynamically-scaled robotic experi-

ments, that N also has a significant relationship to the resonant characteristics of

spring-wing systems. Consider the equation of motion of a spring-wing system with

structural (frequency-independent) damping as defined in [5]:

Itθ̈ + kθ +
kγ

ω
θ̇ + Γ|θ̇|θ̇ = τin (3)

where θ is the wing angle, It is the total inertia of the wing plus added mass inertia, k

is the average spring stiffness across the wing stroke, γ is the structural damping loss

modulus [22], ω is the forcing frequency, and τin is the input torque, which is assumed to

be sinusoidal for analysis purposes, The system constitutes a forced harmonic oscillator

with nonlinear aerodynamic damping torque coefficient Γ, which is typically much larger

than the frequency-independent structural damping term [23]. Note that this model uses

bulk stiffness, inertia, damping, and torque terms that are related to multiple complex

anatomical components. For example, the sinusoidal torque expression on the right

hand side of the equality is a simplification of the effect of antagonistic muscles driven

electrochemical signals and acting through a flexible thorax to create angular wing

motion. Throughout this paper, we will focus on the bulk motion of the wing due to

sinusoidal forcing and using stroke-averaged parameters to enable the reader to build

intuition about these complex systems.

The expression can also be written in non-dimensional form in terms of the

dimensionless angular wing displacement q, the non-dimensional stiffness K̂ = ω2
n/ω

2

(which is 1 when the system is driven at its natural frequency ωn =
√
k/It), the

structural damping factor γ, and the Weis-Fogh number N :

q̈ + K̂q + K̂γq̇ +N−1|q̇|q̇ = τ̃in (4)
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Stability and Agility Trade-offs in Spring-Wing Systems 5

Full derivations and further discussion can be found in [5]. Previously, we found that

when flapping at resonance, the dynamic efficiency, a measure of the amount of muscle

work that goes directly to producing lift/overcoming drag, η = Waero

Wtotal
, decreases as N

increases in systems with any internal damping losses, i.e. from friction or viscoelastic

effects [5]. Therefore, while it is beneficial to have an N > 1 for elastic energy exchange

and resonance, higher values of N have diminishing returns in terms of peak efficiency.

2.2. Linear system analysis highlights stability and maneuverability trade-offs in

resonant spring-wing flight

To gain insight into how we should expect the spring-wing to behave in our start

up and constant aerodynamic perturbation experiments, we start by studying the

behavior of a linear spring-mass-damper. We choose to use the linear equations because

the quadratic aerodynamic damping in the spring-wing equations prohibit closed-form

solutions. However, we will show that features of the linear system are analogous to the

nonlinear version and draw conclusions based on that.

2.2.1. Normalized linear spring-mass-damper Consider the normalized linear spring-

mass-damper equation:

ẍ+ 2ξωnẋ+ ω2
nx = Fm sin(ωt) (5)

where ωn is the natural frequency of the system and ξ is the damping ratio. Another

way to write 5 is by defining the quality factor

Q =
1

2ξ
=

mωn

b
(6)

and substituting into the dynamics equation

ẍ+
ωn

Q
ẋ+ ω2

nx = Fm sin(ωt) (7)

The quality factor represents the effectiveness of energy storage and return in the spring-

wing system during oscillations, and it can be visually represented by the “sharpness” of

the resonance peak when plotting oscillation amplitude versus frequency. Low quality

factors (Q < 0.5) result in overdamped systems with no resonance peak and no energy

savings from the spring, whereas higher Q results in a sharp resonance curve and

indicates efficient energy-exchange between the spring and the oscillating mass.

2.2.2. The time to full amplitude varies linearly with Q The solution to the spring-

mass equation (Eqn. 7) for Q > 0.5 and starting from rest is an oscillatory motion

that has a transient exponential amplitude growth that saturates at the full oscillatory

amplitude. The growth rate of the transient amplitude is determined from the standard

methods as

λ =
ωn

2Q
, (8)
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Stability and Agility Trade-offs in Spring-Wing Systems 6

which is inversely related to Q. Thus, we can solve for the time it would take a forced

linear oscillator to reach ϵ =95% of full amplitude as

tp =
− ln ϵ

λ

=
−2 ln ϵ

ωn

Q (9)

or, expressed in terms of the natural period Tn = 2π/ωn

tp
Tn

= t̂95 =
− ln ϵ

π
Q (10)

This analysis tells us that transient changes in amplitude from a change in oscillator

forcing will decay in a number of wingbeats directly proportional to the quality factor

Q. We illustrate this phenomena in Figure 1.

Thus, a spring-wing system with large quality factor will be more “sluggish” in

response to control input changes, because the response timescale is large.
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Figure 1. Rise time in simulated linear spring-mass-damper Time to full

amplitude is proportional to Q. a and b show startup to 45 degree amplitude and an

amplitude change from 45 to 90 deg for Q = 2 and Q = 8 respectively. The rise time

is slower with higher Q, as shown in c for several values of full amplitude percentage,

p.

2.2.3. The relative influence of aerodynamic perturbations is inversely proportional to Q

Consider a wing flapping in a viscous flow such that the effective velocity at the wing

is ẋ − v. Ignoring added mass effects that may be present in the aerodynamic system,

Equation 7 can be rewritten

ẍ+
ωn

Q
(ẋ− v) + ω2

nx = Fm sin(ωt)

→ ẍ+
ωn

Q
ẋ+ ω2

nx = Fm sin(ωt) +
ωn

Q
v (11)
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Stability and Agility Trade-offs in Spring-Wing Systems 7

The effect of the perturbation after the transient has decayed is to introduce a torque

that biases the spring in the direction of the external flow. The magnitude of the spring

deflection is proportional to the flow velocity and is inversely proportional to Q. Thus

the influence of an external flow on a linear flapping system is smaller in a spring-wing

system with higher Q.

2.3. Resonance presents competing influences on wing maneuverability and

perturbation rejection

The previous two sections illustrated how the control timescale and susceptibility to

aerdynamic perturbations are influenced by the resonant properties of a linear spring-

mass-damper. The quality factor (Q) is an important metric in determining properties

of a resonant system, and highlights potential trade-offs in wing maneuverability and

stability. Higher Q will result in a slower control response from actuation, yet external

fluid forces acting on the wing will result in smaller disruption to wing motion. Lower

Q will result in fast control response from actuation, however external fluid forces will

cause disruption to the wingbeat kinematics. This linear systems analysis provides

motivation for examining the role of spring-wing resonance in the timescales of control

and susceptibility to aerodynamic perturbations in flapping wing systems.

2.4. The Weis-Fogh Number N is the quality factor of a spring-wing system

One method of comparing the nonlinear spring-wing and linear spring-mass equations

is to approximate the linear damping coefficient b with the aerodynamic damping

coefficient Γ multiplied by the maximum velocity of the wing max(θ̇) = θ0ω. Defined as

such, the damping terms for both spring-mass and spring-wing equations are equivalent

at mid-stroke where the wing velocity is highest. This is called the secant approximation

and has been used in previous analysis of flapping wing systems [24]. We can define the

following relationship for the linear damping coefficient that models the spring-wing

bsw = Γθ0ω (12)

Substituting this expression into the equation for the damping ratio yields the following

ξ =
bsw

2mωn

=
Γθ0ω

2mωn

=
1

2N

ω

ωn

(13)

Thus, we see that the Weis-Fogh number has a natural connection to the damping

ratio of a linear spring-mass system under the secant approximation. If we make the

assumption that the system is on resonance (ω = ωn) then the relationship is as follows

ξ =
1

2N
(14)
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Stability and Agility Trade-offs in Spring-Wing Systems 8

We can push this analogy one step further if we consider how the quality-factor relates

to the damping coefficient, and by extension the Weis-Fogh number.

Q =
1

2ξ

=
2N

2
= N (15)

We have demonstrated that the Weis-Fogh number is equal to the quality factor of a

linearized spring-wing system using the secant approximation. This corresponds to our

measurements in [5].

We test the scaling relationship between Weis-Fogh number N and the dynamic

behavior of spring-wings via two experiments in a robophysical model. The first

measures response to control inputs by measuring time to peak amplitude from rest,

and the second measures the effect of environmental perturbations via measuring the

effect of constant cross-flow on symmetry of flapping dynamics. The results suggest that

in addition to its effect on peak dynamic efficiency, N illustrates the scaling of agility

and perturbation rejection among insects and other small-scale flapping systems.

3. Experimental Methods

To demonstrate the relationship between N and the tradeoffs in stability and agility of

flapping in spring-wing systems, we perform a series of experiments on a dynamically-

scaled robotic spring-wing system. The robotic system is subject to real fluid forces

at Reynolds numbers that are scaled to those experienced by insects and insect-scale

robots.

MATLAB 
Script

PC

Figure 2. The series-elastic spring-wing system. a) Conceptual diagram

indicating the angle input, linear spring with structural damping, and rigid fixed-

pitch wing. b) Corresponding photo of the roboflapper indicating the ClearPath servo

motor, silicone torsion spring, and acrylic wing in a large tank of water. c) Diagram

of the whole electromechanical system. See [5] for the full details
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Stability and Agility Trade-offs in Spring-Wing Systems 9

3.1. Dynamically-scaled, series elastic robophysical model

The robotic spring-wing system used in this paper was described in detail in [5] and is

shown in Fig. 2. It consists of a high-torque servo motor (Teknic ClearPath) connected

to a rigid, fixed pitch acrylic wing in a large tank of water. The elasticity comes from a

molded silicone torsion spring in series with the wing 2. We created three springs from

Dragon Skin 30 silicone (SmoothOn) cast in 3D printed molds, varying the geometry

so that they each had a different stiffness. We vary the overall inertia of the system by

attaching mass to the main shaft of the flapper (above the water) in the form of acrylic

and aluminum plates (Fig. 2c). We minimize friction by integrating radial air bearings

and a thrust ball bearing, and we assume that drag from rotation through the air is

much smaller than from the motion of the wing in water. See Table 1 for a list of the

inertia and stiffness values.

Table 1. Inertia and spring stiffness values for the roboflapper

Inertia (kg m2) Springs (Nm rad−1)

IA 0.00105 K1 0.164

IB 0.00149 K2 0.416

IC 0.00233 K3 0.632

ID 0.00476

3.2. Controlling N , an emergent property of spring-wing flapping systems

We sought to compare the transient behavior of the flapper when it flaps with different

values of N . However, due to the dependence on flapping amplitude θ0, N is an emergent

quality of a system, and therefore is difficult to prescribe directly. The following

section describes the process of determining robotic system configurations for a range of

N = 1− 10 that are used for robustness and agility experiments. In all cases, we refer

to a value of N computed using the steady-state flapping amplitude, θ0, and the mean

drag torque coefficient Γ at steady state.

Determine constraints Based on the range of N seen in insects and flapping robots

[3, 5], we sought to test 10 integer values of N , from N = 1 to N = 10. Since we are

interested in resonant flapping performance, we require the forcing frequency be at the

damped resonant frequency,

ω2
r =

ω2
n√

1 + 4N−2
, (16)

derived using the method from [5]. Additionally, we seek to minimize the range of

Reynolds number (Re) across tests. The roboflapper is designed to operate within a

range of Re that is similar to insects and small birds (Re ∈ [102 − 104]), as significant

deviations out of that range introduce aerodynamic phenomena that may not be relevant

to flapping flight at that scale.
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Stability and Agility Trade-offs in Spring-Wing Systems 10

Exp. Spring Inertia Amplitude (deg) Frequency (Hz) N

1 K1 IA 56.2 1.33 1.0±0.01

2 K1 IB 40.0 1.40 2.0±0.01

3 K2 IA 18.7 2.89 3.0±0.01

4 K2 IB 20.0 2.51 4.0±0.01

5 K2 IC 25.0 2.05 5.0±0.04

6 K3 ID 42.5 1.45 6.0±0.01

7 K3 ID 36.8 1.45 6.9±0.02

8 K3 ID 31.8 1.80 8.0±0.02

9 K3 ID 28.3 1.81 9.0±0.03

10 K3 ID 25.5 1.82 10.0±0.03

Table 2. Spring, inertia, target amplitude, and frequency configurations for each

experiment. Amplitude is given as half of the peak-to-peak stroke. The rightmost

column lists the mean and standard deviation of the emergent value of Weis-Fogh

number, N , for each configuration based on the flapping amplitude measured via a

sine curve fit.

Beyond those considerations, we are limited by constraints on the robotic system.

Mechanically, we must use one of three silicone springs, one of four discrete inertial

configurations, and the same wing with Γ = 1.07 × 10−3 Nm. On the control side, we

found that our system works best when the flapping amplitude is between ∼30 and 120o

peak-to-peak and the flapping frequency is between 0.5 and 3 Hz.

Choosing configurations for values of N With three springs and four inertia

configurations, we have a total of 12 combinations of springs and inertia plates that are

possible. We have continuous control of the amplitude and frequency within functional

bounds. The process of choosing a configuration for each value of N is as follows:

(i) Given a particular value of N , compute θo = I
ΓN

for each of the four inertias.

Exclude any configuration where θo > 60o

(ii) Compute the resonant frequency fr based on the remaining inertias and the three

available springs. Exclude any configurations where fr is greater than 3 Hz or less

than 1 Hz.

(iii) Compute the Reynolds number, Re =
Ūtipc̄

ν
, of flapping based on that amplitude

and frequency as well as wing length and chord, 10 cm and 3.6 cm, respectively.

Exclude configurations with Re >≈ 15000, which is near upper limit of Reynolds

number for insects and hummingbirds [18].

(iv) Select a configuration for each value of N from the non-excluded configurations

The final selections are given in Table 2.
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Stability and Agility Trade-offs in Spring-Wing Systems 11

3.3. Experiment 1: Starting from Rest and Changing Amplitude

We sought to measure the effect of a system’s N on the time it takes for the system to

respond to a change in input forcing amplitude. A straightforward way of doing so is

to measure the time it takes for flapping oscillations to reach a steady-state amplitude

after startup. Furthermore, we measured the time it takes to reach a new amplitude

after a change in the input.

For each test, the spring stiffness and inertia were set based on the configurations

above. The system was driven by a sine wave position signal to the servo through

Simulink Desktop Real-Time (Mathworks) and a PCIe 6343 interface (National

Instruments). The frequency was set based on the configuration table, but the wing

amplitude is not set explicitly because of the series-elasticity of the roboflapper. We

found previously that modeling does not fully predict the kinematic gain between

angular motor amplitude and wing amplitude [5]. Therefore, for each configuration, we

found the proper input amplitude to achieve the desired wingbeat amplitude iteratively

using a separate Simulink Desktop Real-Time program, prior to the tests, and recorded

the input amplitudes. When we performed each experiment, we used the input

amplitudes to drive the system in open-loop, which was a fairly reliable way to dictate

N (See Table 2).

Each test was performed by starting the sinusoidal position signal and running for 15

flapping periods, long enough for the amplitude to stabilize (Fig. 3a). After 15 periods,

the sinusoidal amplitude of the motor position command signal was increased by 50%,

and the experiment continued for a further 15 periods before ending the experiment.

This process was repeated five times for each value of N and sampled at a rate of

1000 samples per period. Note that we refer to the number of periods and that each

experiment was run at a different frequency (Table 2), so the total runtime varied. The

final amplitude θ0 was determined by fitting a sine curve to the last 5 periods of the

each portion of the test using a bounded nonlinear least squares method in MATLAB

(Mathworks). Then an exponential curve (f(t) = θ0(1 − e−λt) was fit to the peaks of

absolute value of the wing angle in the start and step portions of the data, and the time

to 95% of θ0 was computed using t̂95 = − ln (0.05)λ−1fr (Fig. 3b&c). To create the

plots in Figure 3b and c, N was recalculated based on actual experimental amplitude

measurements using Eq. 2. The actual amplitude from fitting the sine curve varied

slightly from the prescribed amplitude, resulting in a small amount of horizontal spread

of effective N for each experiment. The means and standard deviations of both N and

t̂95 are plotted in Appendix B, and the values for N can be found in Table 2.

3.4. Experiment 2: Effect of constant cross-flow

For the second experiment, we wanted to see how N relates to the flapping wing’s ability

to reject environmental disturbances. We did this by subjecting the flapping wing to

a constant crossflow and measuring its deviation from a symmetrical sine wave. The

flow was provided by a submerged aquarium pump (Simple Deluxe LGPUMP400G 400
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Stability and Agility Trade-offs in Spring-Wing Systems 12

GPH) fitted with a 1/2” diameter rubber tube. The outlet of the tube was positioned

such that it was aligned with the acrylic wing in the tank and created the maximal

passive deflection (see Figure 4a) against the spring, but did not interfere with flapping,

i.e. there was no difference between flapping trajectory whether the tube was in place

or not. We measured the torque on the wing when the pump was on and the flow was

perpendicular with the wing. We found that the torque was approximately 0.01 Nm, only

enough to deflect the softest spring about 3.5 degrees. The maximum peak aerodynamic

torque across the experiments is for N = 1 and is τamax = Γ(θ0)
2(2πf)2 = 0.072 mNm.

Thus the magnitude of the perturbation is significantly lower than the maximum drag

induced by flapping motion, but is still enough to induce asymmetry in flapping.

We ran the flapper with a constant sinusoidal input that produced a wing amplitude

consistent with the proper configuration at each value of N . We recorded the wing

trajectory with the pump off to set a baseline at each value of N , then turned the pump

on. We analyzed the impact of aerodynamic perturbation on the flapping kinematics by

fitting a sine function to the wing trajectory at steady state using MATLAB functions

(Mathworks) and recording the fit error (RMSE). The fit error was normalized to the

flapping amplitude at that configuration so that it represents the fraction of flapping

amplitude and is unitless. Additionally, we noted a change in steady flapping amplitude

with the pump on, and plotted the relative change in amplitude from the no flow case

to the constant flow case.

4. Results

4.1. Start time and step time increase linearly with N

We measured the time interval from initiation of flapping to reaching 95% of the steady-

state flapping wing amplitude from an exponential fit. To normalize this time period

across different resonance frequencies we multiplied the start-up time by the frequency

of flapping, resulting in a measurement of the the number of wing strokes to reach

steady-state. The results across N are shown in Fig. 3b. We see that there is a clear

relationship between increasing N and increasing time to full amplitude (dashed lines).

Configurations with N = 1 or 2 are at full amplitude within a single wingstroke, whereas

N = 8− 10 systems take four or more wingstrokes.

The relationship is linear (tstart = 0.486N − 0.243), but there is a small amount of

variance (Appendix, Figure B1) for each prescribed value of N . The vertical spread is

to be expected due to fitting in the presence of noise, but we also found that the rise

time was sensitive to whether or not the system was at exactly the resonant frequency,

maximizing the kinematic gain (Gk = θo/θinput). This was a more significant issue at

higher N because of the steeper resonant curve, and the added mass of the system would

have made it susceptible to small asymmetries and potentially larger friction, though

that was mediated by thrust ball bearings. The horizontal spread indicates that we

were not always exactly at the desired value of N . The means and standard deviations
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Stability and Agility Trade-offs in Spring-Wing Systems 13

N NFlapping Periods

Experiment Experiment

Figure 3. Responsiveness Experiments. a) We drive the series-elastic system via servo

(blue) and measure the emergent flapping kinematics (orange). We fit exponential

curves to the flapping peaks during start up (yellow) and after an input step (purple)

15 cycles after start. The measured time (in wing strokes) to full amplitude is linearly

related to N (b & c). However, the effective value for N is less than prescribed after

the step due to an increase in flapping amplitude (c).

of N from 1-10 are shown in Table 2, and the standard deviations are illustrated by the

horizontal bars in Figure B1.

The response time after a step increase in input also has a clear linear relationship

with N (Fig. 3c). The linear fit is slightly different from the startup data (tstart =

0.503N−0.376), but they largely fall upon the same line. The major difference between

the two is that because of the change in amplitude after the step, the effective value of

N is lower than it was before the step due to the inverse relationship between θ0 and

N (Eq. 2). The effect is a compression of the datapoints along the diagonal, since the

response time decreases along with N , as shown in Figure 5.

4.2. Resistance to perturbations increases with increasing N

We subjected a flapping wing at steady-state amplitude to a transverse flow, and we

measured the change in wingstroke kinematics after flow onset. We observed that spring-

wing configurations with larger Weis-Fogh number sustained sinusoidal flapping wing

kinematics in the presence of flow perturbations, whereas lower N systems exhibited a

distortion in the sinusoidal wing motion (Figure 4). This asymmetrical warping of the

wing trajectory at low N was observed as non-sinusoidal wing kinematics (4a) and a

corresponding non-circular phase portrait (Fig. 4a, b). Note that the trajectories are

“lumpier” when N is small, but also that there’s a decrease in flapping amplitude overall

at higher N .

We fit a sine wave to each trajectory and calculated the root mean squared error

(RMSE) relative to the flapping amplitude, which quantifies how well a sine wave fits

to the data. This error will never reach zero, but for the no-flow case, it is small -
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Figure 4. Description of the Constant flow experiments. a) Schematic of the

orientation of the water jet relative to the wing, and conceptual representation of

the effects of flow on time and phase domain plots. b) Variation in limit cycle plots

across N . Plots show 2 periods of steady oscillation with and without flow, at different

values of N . c) Plots of fit error for flow and no-flow cases across N , as well as fit lines

for expected N−1 function and a best fit curve. d) Illustration of relative amplitude

decrease across N , and mean at 84% of full amplitude.
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Stability and Agility Trade-offs in Spring-Wing Systems 15

just 0.76% of the flapping amplitude. We find that the sinusoidal fit error at N = 1 is

approximately ten times larger than for N ≈ 10 with a maximum error near 8% of the

flapping amplitude.

Based on Eq. 11 and our association of Q and N , we expect that the influence

of asymmetric flow should be inversely proportional to N . We fit an inverse curve

AN−1 + C to the error data, fixing the offset C = 0.0076 to be equal to the measured

baseline no-flow error. The optimal curve (Plin(N) = 0.053N−1 + 0.0076) based on the

linear analysis does a fairly poor job of fitting the data (R2 = 0.80). Thus we relaxed

the constraint on the power of N and fit the curve AN−B +C, which produced a curve

(Plin(N) = 0.073N−1.745 + 0.0076) that fit the data much more closely (R2 = 0.97). We

also measured the final amplitude while the flow was turned on for each experimental

configuration and compared to the initial amplitude at that value of N . We found that

the amplitude was reduced by an average of 16.4%, regardless of N . This is unlike the

expectation from the linear damping case, where we would not expect to see a decrease

in amplitude, just a shift in the center of oscillation.

5. Discussion

5.1. Lower N provides faster responsiveness to wingbeat amplitude control changes

We have shown that the time it takes for a spring-wing system to respond to a

control input change is linearly related to Weis-Fogh number, N . Thus a flyer with

a greater Weis-Fogh number—determined by their wing mass, wing shape, wing-stroke

kinematics, and wing pitch kinematics—will have reduced control authority when it

comes to starting, modulating, or stopping wing motion. In order to perform high-

speed agile maneuvers, insects need to be able to quickly modulate lift and drag forces.

They can do so by modulating both amplitude and frequency [19], but more often

at higher frequencies it is accomplished by modulating wing rotation [25, 26]. The

modulation of wing angle of attack or joint characteristics via steering muscles [27]

may be more effective at high N since they can modulate both amplitude and Weis-

Fogh number by changing the aerodynamic characteristics of the wing. Our input step

experiments demonstrate that, since N is a function of flapping amplitude, changes to

amplitude also change the control authority. Figure 5 shows the degree to which N and

transient time shift due to the increase in amplitude. The arrows start at the points

corresponding to the start up time and point to the location in the plane where the

step time is located. The arrows follow the linear trendline, and the length of the arrow

is greater for larger starting values of N . In engineering, control authority is critical

for ensuring that a system can meet performance objectives like stabilization in the

presence of disturbances or trajectory following. The loss of control authority—stalling

in an airplane, for example—can lead to catastrophic failure if control is not regained

in time. In insects, the ability to quickly maneuver through an array of obstacles or out

of the grasp of a predator is similarly important. Since N is relatively easy to measure
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Experiment

Figure 5. Amplitude increases due to a step increase in input amplitude lead to

commensurate decreases in N and transient time. Data points are shown in color, and

gray arrows indicate the movement due to increased control input. The arrows are all

roughly aligned with the trendline.

for a particular species of insect, requiring just estimates of wing mass, wing shape, and

wing kinematic data, it may serve as a useful metric for an insect’s relative ability to

perform agile maneuvers. Additionally, it suggests an opportunity for new designs of

flapping robots that incorporate control via wing pitch modulation that could enable

dynamic modulation of control authority based on control objectives.

5.2. Higher N provides greater stability in unpredictable natural environments

An insect or flying robot that needs to be more agile may benefit from a lower N , but

there is a trade off of wing stroke stability. At lower N , the inertia of the wing during

flapping is of the same order as the aerodynamic forces, so variations in aerodynamic

forces from the environment (turbulence, wind gusts, etc) will have a larger effect on

the flapping wing kinematics. This can pose issues for an insect, since steady wingbeats

are necessary to produce consistent lift. Our flow experiments show that an insect

or flapping wing robot with body elasticity is less susceptible to disruptions from the

environment when it has a high Weis-Fogh number. This means that a flapper that

needs to fly in a windy environment may benefit from lower amplitude flapping, more

massive wings, and/or wing shapes or stroke profiles that minimize drag.

Page 16 of 25AUTHOR SUBMITTED MANUSCRIPT - BB-103913.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Stability and Agility Trade-offs in Spring-Wing Systems 17

5.3. Weis-Fogh number as the quality factor of spring-wing systems

The series of analyses we performed in the first section of this paper looking at the

transient behavior of a linear spring-mass-damper as an analogue to the spring-wing

system illustrate that the quality factor Q is linearly related to the start up time of

the system and inversely related to the relative effect of external perturbations. Our

experimental results with the nonlinear spring-wing system show similar trends.

5.3.1. Changing amplitude changes the transient time constant As shown in Fig. 5, the

response time of the spring-wing to a control input depends not just on the magnitude

of the input, but also on the amplitude of flapping. This is an inherently nonlinear

phenomenon due to aerodynamic damping, and is not the case for the linear system.

However, since the shift induced by the amplitude change (gray arrows, Fig. 5) follows

the trendline fairly closely, it does seem that the relationship between N and response

time is maintained despite the transient changes in N .

The actual relationship we expect between response time (defined at 95% of the

full amplitude) and Q based on equation 10 is

t̂95 =
− ln 0.05

π
Q = 0.9536Q ≈ Q (17)

If we inspect the trendline for the response time of the spring-wing system we find the

relationship

t̂95 = 0.486N ≈ N

2
(18)

Thus, we find that the response time of an oscillator to control commands scales linearly

with the Weis-Fogh number in the case of flapping wings and with the quality factor in

the case of a linear spring-mass-damper.

This finding agrees qualitatively with the relationship shown in Eq. 16, but

notably, other methods of linearizing the aerodynamic force will produce different

proportionality relationships. For example linearization can be done by equating

the energy dissipation between an aerodynamic and a viscous force. However, prior

comparisons between quality factor and Weis-Fogh number are consistent with our

findings of a proportional (linear) relationship between Q and N , with differing

proportionality constants depending on the assumptions [28, 11, 10].

5.3.2. Nonlinear aerodynamics results in more stability at higher N In section 2,

we argued that an external flow should affect a linear spring-mass-damper less as Q

increases, i.e.

Fflow =
ωn

Q
v (19)

Thus we expected an inverse relationship between N and flapping non-sinusoidality.

Additionally, we expected that a flow should cause a consistent off-center stretch in the

spring, i.e. a steady-state offset in the positive x direction (Eq. 11), but maintain the

same flapping amplitude.
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In fact, we found that an inverse (N−1) relationship did not fit the data well.

Instead, a function with N−1.745 fit better, suggesting that the quadratic relationship

between the system and the flow asymmetry, Γ|ẋ− v|(ẋ− v), introduces dynamics that

result in greater passive stabilization of the sinusoidal wing kinematics. Additionally,

we see that the flapping amplitude is affected by the asymmetry, causing a decrease

in overall amplitude. This would be detrimental to a high-N flapping flyer’s ability to

produce lift, but as long as it is not using maximum muscle strength during normal

flapping, it should be able to increase the force it uses to drive the wings to achieve the

necessary amplitude. The situation would be worse for a low-N flyer which would need

to control amplitude variations within a single wingstroke to maintain smooth flapping,

regardless of the strength of the muscle

5.4. Weis-Fogh number as a performance metric for flapping fliers - living or

engineered

In this and previous experimental and theoretical work [5, 10], we have shown that the

Weis-Fogh number is a metric that encompasses important performance characteristics

for flapping flight: dynamic efficiency, responsiveness/agility, and stability. When we

plot the distribution of Weis-Fogh Number across a wide range of insects, we notice that,

large or small, they seem to exist in the range of N = 1−8. There are some exceptions,

of course, but they are characterized by the extremely small flying insects [29] who fly at

very low Reynolds numbers, and butterflies, whose especially large wings and stuttering

wing stroke dynamics distinguish them from the more controlled hovering of flies, bees,

and hawkmoths. Small insects like those studied in [29] likely have values of N << 1

(Paratuposa placentis, N ≈ 0.14, see Appendix) due to the presence of bristled wings

that significantly decrease wing inertia, and therefore drive N to be smaller; butterflies,

like P. Brassicae, N ≈ 0.4, also have N < 1, but via large aerodynamic drag from

large wings. Since the benefits of elastic energy storage drop off when N < 1, we would

expect that such insects need to develop adaptations other than thorax elasticity to

maintain flight. However, thorax elasticity is critical when flight requires wings with

significant inertia and high frequency wingbeats. The fact that other insects who rely

on fast wingbeats exist in this constrained range of Weis-Fogh number suggests that the

variation in N may reflect a balance of different performance trade-offs (Figure 6)

Similarly, mechanical system parameters can reflect trade-offs between agility and

stability. Fighter aircraft with adjustable wings are one example of a system that can

shift from a more stable shape (wings extended) to a faster, more agile, but less stable

configuration (wings folded). This has been taken to an extreme with fighter jets with

forward-swept wings, like the Grumman X-29, which trades off high maneuverability for

increased instability. Indeed, there is even some evidence that wing morphing in birds

similarly leverages aerodynamic instability to improve flight performance [31].

Thus it makes sense that the evolutionary development of flapping flight should also

balance energetics, agility, and stability. Perhaps the restriction of flapping animals to a
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Figure 6. Flapping system performance trade-offs. a) Higher N means greater

flapping amplitude for a given actuator. b) Lower N leads to faster response

times, but c) more vulnerability to aerodynamic perturbations. d) This may point

to an explanation for the number of insects and flapping micro-aerial vehicles

[Hines2013-yr, 30] across orders of magnitude of size that remain within the range

of N = 1− 8. Low-N exceptions like P. placentis[29] and P. brassicae[3] may point to

unique adaptations for efficient flight.
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moderate region of Weis-Fogh number (N = 1−8) is due to tradeoffs that occur between

1) energetic efficiency (increases with N), 2) wing stroke responsiveness to control inputs

(decreases with N), and 3) passive wingstroke stability when subjected to external

perturbations (increases with N). Those, combined with the necessity of elastic energy

exchange to maintain efficient flight, may constitute a driver of evolutionary change.

6. Conclusions

The evidence presented in this manuscript and our prior work [5] suggests that the

Weis-Fogh number, an underappreciated non-dimensional parameter first identified by

Torkel Weis-Fogh in the 1970’s, is an important indicator of several important aspects of

flapping flight [10, 2, 10]. Determining the Weis-Fogh number of a flapping wing system

- be it biological or robotic - can provide insight into the system’s ability to benefit

from elastic energy storage and release, perform agile maneuvers by modulating their

wingstroke kinematics, and deal with aerodynamic perturbations while maintaining a

stable hover. However, as is often the case, this is just the first step to understanding

“spring-wing” system dynamics. Further work is necessary to understand how insects

leverage resonant dynamics and better understand how to design high-performance

flapping robots.

For example, while this work has focused on flapping at or near resonance, recent

studies have complicated the picture of resonant flapping flight in insects. In two

studies Pons [28, 11] found that, in systems with both parallel and series elasticity

such as the flight anatomy of flies, multiple separate resonance frequencies may exist,

creating “band” resonance where resonance benefits may occur over a broade range

of flapping wing frequencies. In biological measurements of the flight anatomy of 10

species of Bombycoid moths, Wold found that each species flapped its wings not at its

resonant frequency, but at a significantly higher frequency [10, 9]. That study found

that insects with Weis-Fogh numbers that would enable efficient flight at resonance

seem not to leverage that energetic benefit, instead flapping at higher frequencies, for

reasons that are not yet fully understood. Additionally, the dynamics of many insects

are heavily influenced by self-excited asynchronous flight muscle, blurring the definition

of “resonance” and complicating the spring-mass-damper analogy. Flapping frequency

in these self-excited systems is an emergent property that depends on not only the

mechanical aspects of the anatomy, but also the timing and strength of myogenic force

production in the muscles [32].
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Another aspect of resonant flight that begs more study is the influence of wing pitch

and wing flexibility. Here, we have used a rigid plate to emulate a wing, and we do not

vary the pitch angle during flapping. However, studies have found that wing flexibility

can lead to improved flight efficiency via elastic energy storage [33] and beneficial fluid-

structure interactions. The aeroelastic interactions between a wing membrane and the

fluid are far more complicated than the single degree of freedom presented here, and

today many studies of flexible wing structures lean on computational fluid dynamics

methods or dynamical scaling approaches. Dynamically scaling a continuum fluid-

structure interaction problem like a bending flexible wing can be complicated because

it requires matching several dimensionless parameters like the Reynolds number, the

Cauchy number, the mass number, and the Strouhal number [16, 17]. The Cauchy

number represents the ratio of fluid dynamic forces to elastic forces exerted on a

structure. In the context of our one-dimensional spring-wing system it is interesting to

examine the Cauchy number (Ch). In our experiments we drive the wing at resonance

and thus the maximum inertial forces at resonance are equal to the maximum elastic

forces and thus by inserting this into the Cauchy number definition we find that

Ch =
max (τaero)

max (τinertia)
=

1

N
(20)

Thus, by scaling our experiment to match the range of calculated Weis-Fogh numbers

for insects and scaling Reynolds number appropriately we are able to dynamically match

the spring-wing dynamics of insects.

This work will have potential impact on future biological and robotics studies of

flapping wing flight. Future robophysical and robotic experiments could investigate

the interactions between body and wing elasticity or seek to understand how sub-

wingstroke modulation of wing pitch or stroke plane may enable agile maneuvers

despite average wingstroke dynamics that have a high Weis-Fogh number. Such

studies would further deepen our understanding of the environmental and evolutionary

pressures that drive morphology and also drive innovation in the design of flapping

wing robots. Furthermore, the control of flapping wing motion is challenging and better

understanding how to incorporate beneficial system elasticity not just for efficiency

gains but also for control and stability purposes. Overall, elasticity is present and

important in the insect flight system and future investigations will benefit from a focus

on understanding the interaction between actuators, elastic elements, and aerodynamic

forces.
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Appendix A. Computing N using measures of flapping power

When the maximum aerodynamic and inertial torques are not available to compute

the Weis-Fogh number, it is also possible to approximate using the aerodynamic and

inertial power. Note, this approximation assumes sinusoidal wingstrokes, which is far

from guaranteed; however, this gives a first-order approximation that can be improved

through deeper analysis.

Given a sinusoidal wing trajectory ϕ = ϕo sin(ωt), the inertial and aerodynamic

torques on the wing, according to 3, are

Ti = Iϕ̈ = −Iϕoω
2 sin(ωt) (A.1)

Ta = Γ|ϕ̇|ϕ̇ = Γ|ϕ2
oω

2| cos(ωt)| cos(ωt) (A.2)

The respective inertia and aerodynamic powers are therefore

Pi = Tiϕ̇ = (−Iϕoω
2 sin(ωt))ϕoω cos(ωt) = −0.5Iϕ2

oω
3 sin(2ωt) (A.3)

Pa = Taϕ̇ = [Γϕ2
oω

2| cos(ωt)| cos(ωt)]ϕoω cos(ωt)

= Γϕ3
oω

3| cos(ωt)| cos2(ωt) (A.4)

The maximum magnitudes are |Pi|max = 0.5Iϕ2
oω

3 and |Pa|max = Γϕ3
oω

3. Therefore,

|Pi|max

|Pa|max

=
0.5Iϕ2

oω
3

Γϕ3
oω

3
=

I

2Γϕo

=
N

2
(A.5)

and

N = 2× |Pi|max

|Pa|max

(A.6)

We use this estimate of N to plot the featherwing beetle Paratuposa placentis

alongside the reported values of N from Weis-Fogh [3]. Based on this relationship,

we can inspect figure 3e from [29] and see that there is a maximum (mass specific)

aerodynamic power of ∼110 W kg−1 and inertial power of ∼7.8 W kg−1. Thus N ≈ 0.14.

We were able to place it on the chart in Fig. 6e using the fact that the reported body

mass is 2.43 ± 0.19 µg[29].

It is also possible to compute N from mean values of Pi and Pa, as opposed to

maxima. In that case, we integrate the expressions for Pi and Pa over the portion of

the wingstroke where they are both positive (the first half of the half-stroke):

P̄i =

∫ π
2ω

0

0.5Iϕ2
oω

3 sin(2ωt)dt =
1

2
Iϕ2

oω
2 (A.7)

P̄a =

∫ π
2ω

0

Γϕ3
oω

3| cos(ωt)| cos2(ωt) = 2

3
Γϕ3

0ω
2 (A.8)

We can then relate N to the ratio of these values:

P̄i

P̄a

=
1
2
Iϕ2

oω
2

2
3
Γϕ3

0ω
2
=

3

4

I

Γϕ0

=
3

4
N (A.9)

Thus we can take measurements of mean inertial and aerodynamic power, such as that

reported by Ellington [34], and compute N using the relationship N = 4
3
P̄i

P̄a
. We have

included data from [34] calculate in this way in Figure 6.
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Appendix B. Additional Tables and Figures
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Figure B1. Start and Step Time data plotted with error bars representing standard

deviation in measured N (horizontal) and t95 (vertical
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