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reconstruction and additionally we provide the nearest alternative reconstructions as a sensitivity
analysis. In section B, we provide a calculation of the work output from delayed stretch activation
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A. Ancestral state reconstruction

1. Implementation

We used a phylogeny grounded in fossil records spanning all insect orders [1], which modifies
the fossil calibration of the extensive insect phylogeny developed by Misof et al. [2]. For ancestral
state reconstruction, we first assumed the most conservative model in terms of free parameters:
an equal rates (ER) model of evolution. We used maximum likelihood estimation to estimate the
posterior probability of ancestral states using the Phytools R Package [3]. These analyzes were
performed in RStudio (v. 1.1.383) using R (v. 4.0.2). We report this reconstruction in the main
text, but include a number of additional tests done with corHMM R package [4, 5].

We next tested if the reconstruction, especially if the pattern of single origin of asynchrony
followed by multiple reversions to synchrony, was robust under other evolutionary models. In
additional reconstructions, we allowed all the transition rates to differ (”all rates different”). Fur-
ther, we alternatively coded ”unknown” and ”wingless” taxa as having their own unique character
states (where wingless and unknown were character states) or, in other models, as being ambiguous
with respect to synchronous and asynchronous fiber types and not having an assigned character
state. Each of these additional reconstructions still produced the same transition patterns between
character states at the order level, including the single ordinal original of asynchrony. Some small
differences within orders with multiple transitions (e.g. Hemiptera) can occur, but more confident
within-order resolution would likely require increased sampling that is currently unavailable for
muscle ultrastructure data.

Adding more character states and allowing rates to be different can rapidly increase the number
of free parameters in the rate transition matrix. We assess this with the Akaike information criterion
corrected for sampling size (AICc). The most favored model treats ”unknown” and ”wingless” taxa
as ambiguous (coded as ”?”) and has all rates differing (ARD vs ER AICc, 89.5 vs. 100.6). In this
model Node 200 is reconstructed as the only origin of asynchrony 100% of the time. However, we
are concerned that with 10 transitions across the phylogeny that the fitting of six rate parameters
may still be overfit and fragile to additional sampling, so we report the more conservative single
parameter, equal-rates model in the main paper. However, the single original transition from
synchronous to asynchronous followed by multiple reversions and the status of Lepidoptera as
secondarily synchronous fliers were consistent across all ancestral state reconstructions regardless
of the specific model used or the specific coding of wingless and unknown taxa.

All the above models assume a single class of rates, that is homogenous rates of evolution over
the entire phylogeny. However, especially across large phylogenies, the transition rates between
character states may themselves vary across the phylogeny (e.g. one clade can evolve faster than
another) [5]. These rate transitions can significantly affect ancestral state reconstructions and
transition events, often improving models at least when sufficient data are available [4, 6]. To
account for this possibility we also implement a hidden rates model that includes transitions be-
tween 2 or more crates of evolution across the phylogeny using the multiple rate classes models in
the corHMM R package. Given that the introduction of a second hidden rate transition at least
doubles the number of transition rates that must be estimated by the model, we suspected that
these more complex models would overfit the data because there were only 10 transitions across
the whole phylogeny. This was indeed the case, as the resulting AICc values were higher with
hidden rates included. The AICc for the ARD model for all character states coded was 242.2 with
two classes and only 183.8 with one class. With ambiguous coding for ”unknown” and ”wingless”
taxa, the AICc was 100.4 for two rate classes compared to 89.5 for one class. An ER model with
multiple rate classes did have a more favorable AICc to the one class ER model (AICc 94.3 vs.
100.6 respectively), but if the model is going to be made more complex, the ARD model with one
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class of rates is still favored (AIC 89.5).
The overfit reconstructions with multiple rate classes did produce more variable transitions,

with many patterns possible across separate stochastic character reconstructions. Single origins of
asynchrony were still common, although not the majority specifically at Node 200. The majority
of reconstructions had an asynchronous ancestor at a node basal to lepidopterans. Reconstruc-
tions might improve with more sampling but many orders are likely exclusively synchronous or
asynchronous, and there are unlikely to be too many more transitions. We do suspect that evo-
lutionary rates may differ over the tree, especially in Hemiptera where multiple transitions occur.
This would be consistent with different orders typically occupying parts of parameter space near
or far away from the bridge as seen in simulations and robophysical experiments (Fig. 3). We
just cannot support a more accurate reconstruction with this assumption given the limitations in
the data available. Regardless the phylogenetic evidence that at least some clades can transition
and potentially share asynchronous and synchronous properties is independently supported by our
subsequent physiology experiments on lepidopteran flight muscle (Fig. 2).

2. Comparison to other results

Previous attempts to infer the evolutionary history of muscle type across all insects have equiv-
ocally concluded that asynchronous flight muscle has evolved independently multiple times [7].
However, at the time of these previous studies, a well-resolved insect phylogeny was not available
and the position of key groups has since been further resolved. In light of this, [7] acknowledges
that other evolutionary scenarios are possible and points out that in their own work, the assign-
ment of asynchronous muscle to key equivocal ancestral branches would result in a single origin of
asynchronous flight muscle with several reversions back to secondarily synchronous flight muscle
[7]. Our present study does indeed find that the equivocal ancestral branches noted by [7] to be
asynchronous flight muscle, which does result in a single origin of asynchronous flight muscle, sup-
porting one of the alternative hypotheses by [7]. We then further support these findings through the
identification of key physiological features associated with asynchronous muscle (delayed stretch
activation) in the secondarily synchronous hawkmoth flight muscle (see main text). Finally, a sin-
gle origin of asynchronous flight muscle does not preclude further specialization of asynchronous
muscle and differences in the physiology and ultrastructure of asynchronous flight muscle between
insect orders. It is highly likely that asynchronous flight muscle has indeed continued to evolve
since its single origin and further specializations within given orders are expected based on the
functional demands of the evolution of new behaviors and ecological niches between orders.
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B. Delayed stretch activation model

1. Frequency-dependent power output of the delayed stretch activation feedback model

The work and power output from muscle is often characterized through a “work loop” experi-
ment in which muscle is subjected to a sinusoidal length change and the force is measured [8, 9].
Cycle-averaged work and power output are computed by integrating the forces vs position over a
cycle. This technique can be used both in for synchronous muscle contractions where the force is
primarily due to neurogenic release of calcium, or stretch-activated asynchronous muscle contrac-
tions [10]. A characteristic phenomenon in asynchronous muscle is that the work and power output
are maximized at an oscillatory frequency between zero and an upper limit maximum.

Here, we compare the work and power output predictions from our convolution model of delayed
stretch activation to assess the model’s efficacy in recapitulating physiological properties. Assuming
a sinusoidal length input, we can analytically calculate the power output of a delayed stretch
activation feedback model.

As defined in the main text, we defined asynchronous forcing (Fasync) as

Fasync(ε̇, t) = µFa(−g ∗ ε̇)(t) = −µFa

∫ t

0
ε̇(τ)g(t− τ)dτ, (1)

The nondimensional kernel g(t) is defined in the methods and we repeat it below

g(t) =
1

g0

(
−e−r3t + e−r4t

)
(2)

We evaluate the convolution (Eq. 1) assuming a sinusoidal strain rate (ε̇(t) = ε0ω cos (ωt)),
ε0 is the strain oscillation amplitude, and ω is the imposed oscillatory frequency. This yields the
following equation for the time dependence of the delayed stretch activation force

Fasync = −µFa
ε0ω

2

go

[
1

ω2 + κ2r23
− 1

ω2 + r23

]
sin (ωt)

−µFa
ε0ωr3
go

[
κ

ω2 + κ2r23
− 1

ω2 + r23

]
cos (ωt)

+µFa
ε0ωr3
go

[
κe−κr3t

ω2 + κ2r23
− e−r3t

ω2 + r23

] (3)

where κ = r4/r3. We are interested in the steady-state periodic response of the muscle after
transients have died away, and so we can neglect the exponential decay in the third term. To
calculate work (W ) we integrate the instantaneous power (force times velocity, Lε̇) over a cycle

W =

∫ 2π/ω

0
(Fasync)× (Lε̇) dt (4)

= µFaL
ε20ω

2r3
go

[
1

ω2 + r23
− κ

ω2 + κ2r23

] ∫ 2π/ω

0
cos2(ωt)dt (5)

= µFaL
ε20ω

2r3
go

[
κ

ω2 + κ2r23
− 1

ω2 + r23

](
π

ω

)
(6)

= µFaL
πε20ωr3

g0

(
ω2 − κr23

)
(1− κ)(

r23 + ω2
) (

κ2r23 + ω2
) (7)
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FIG. SI1. Predicted work output per cycle from delayed stretch activation model. The two curves
show predictions from Equation 9 for Lethocerus indicus (green; r3 = 20 s−1) and Vespula vulgaris (orange;
r3 = 160 s−1). Values of r3 are from [11]. A value of κ = 0.1 recapitulates the frequency of maximum work
output compared with experiment (arrows above plot[11]). Since κ is not directly known we also include
the full frequency range of work output as horizontal bars for the feasible range of κ = [0, 1].

The work output is still dependent on our normalization parameter (go). Because we normalized
the convolution by the area under the curve in our simulations and experiments, we solved for go
as

go =

∫ ∞

0
g(t)dt =

(1− κ)

r3κ
(8)

Normalizing Eq. 7 by go gives the final work output yields

W = µFaL
πε20κωr

2
3

(
ω2 − κr23

)(
r23 + ω2

) (
κ2r23 + ω2

) (9)

From this equation, we conclude that work output is positive if ω >
√
κr3. Intuitively this makes

sense: if the muscle is stretched slowly (small ω) then it will develop a delayed stretch activation
force that resists the stretching, thus causing a negative work output (dissipating energy). However,
if the muscle is stretched fast enough the delayed rise in tension will occur during the contraction
cycle which follows the stretch. In this case, the delayed stretch activation force will pull while the
muscle is shortening and will thus do positive work to power wingbeats.

To assess the efficacy of this model and assumptions made in the main text, we used r3 values
from [11] for Vespula vulgaris and Lethocerus indicus. Note that Vespula vulgaris, the common
wasp, is sometimes referred to as Vespa vulgaris. For both species, we calculated cycle-averaged
work output over a range of frequencies. We find that our model recapitulates the basic observed
phenomenon of delayed stretch activation, work output is maximized at intermediate oscillatory
frequency (Fig. SI1). Furthermore, the predictions from Equation 9 for the frequency where max-
imum work occurs agrees well with measurements from Molloy (arrows in Fig. SI1 are measured
frequencies of maximum work from [11]). Therefore, our dSA feedback model captures the es-
sential frequency dependent properties of asynchronous muscle. This also gives a framework for
comparing the delayed stretch activation parameters from the stretch-and-hold experiments to the
power output possible in cyclical wingbeats.
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C. Dynamics of the asynchronous regime

1. Linear stability analysis of asynchronous dynamics

In this section, we will transform the convolution representation of delayed stretch activation
into an ordinary differential equation. By using a differential equation as the mathematical rep-
resentation of delayed stretch activation we can apply analysis tools from nonlinear dynamics to
explore the basic properties of asynchronous spring-wing dynamics. The delayed stretch activation
force, Fasync is naturally represented as a convolution of a dSA kernel, g(t), with the strain rate of
the muscle, ε̇.

Fasync(ε̇, t) = µFa(−g ∗ ε̇)(t) (10)

We say “naturally”, because the kernel g(t) can be directly observed from stretch and hold ex-
periments on insect muscle. The kernel is typically fit with a multi-rate and exponential equation
that as described in the methods and reduced to a normalized two parameter model in Eq.2 in
the previous section. The kernel is normalized by the area under the curve, 1

g0
= κr3

1−κ from Eq.
8 and we allow for a scaling parameter µ. To convert this convolution expression to a differential
equation we can work in the Laplace domain. The Laplace transform of a convolution yields a
straightforward multiplication rather than an integration, i.e. Fasync(s) = µFaG(s)Ė(s), where
s is the Laplace variable. Taking the Laplace transform of the delayed stretch activation kernel,
g(t), yields the transfer function G(s) which transforms the velocity feedback input to the delayed
stretch activation response:

L(g(t)) = G(s) =
1

g0

(
−r3(1− κ)

s2 + r3(1 + κ)s+ κr23

)
=

−κr23
s2 + r3(1 + κ)s+ κr23

(11)

=
−α3

s2 + α2s+ α3
(12)

where we have used the following definitions: α2 = r3(1+κ), α3 = κr23. Once we have the delayed
stretch activation dynamics represented in the Laplace domain, we can express the dynamics of
asynchronous actuation as an ODE. In the Laplace domain, the force output is the product of the
transfer function and the velocity input:

Fasync(s) = µFa

[
−α3

s2 + α2s+ α3

]
Ė(s) (13)

We can distribute the denominator of the transfer function and take the inverse Laplace transform:

s2Fasync(s) + α2sFasync(s) + α3Fasync(s) = −µFaα3Ė(s) (14)

L−1 ⇒ F̈async + α2Ḟasync + α3Fasync = −µFaα3ε̇ (15)

Equation 15 represents a linear ordinary differential equation form of the delayed stretch activation
phenomena. This is identical to the convolution formulation and yields identical results. However,
the ODE form of these equations leads to a straightforward analysis of the dynamics when delayed
stretch activation muscle is coupled to the body mechanics.
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We now examine the case when only asynchronous actuation occurs, Kr = 0. In this case the
muscle force, Fm = Fasync(ε̇, t). The delayed stretch activation force dynamics and the spring wing
dynamics yield a pair of coupled, second order differential equations.

Iϕ̈+ Γ|ϕ̇|ϕ̇+
klϕ

T 2
=

Fasync

T
(16)

F̈async + α2Ḟasync + α3Fasync = −µFaα3ϕ̇ (17)

This set of coupled equations now allows to study the basic dynamics of emergent oscillatory
wingbeats in asynchronous flight. We begin by transforming this into a coupled set of first order
differential equations with the following transformations σ = [θ, θ̇, fdSA, ḟdSA] such that

σ̇1 = σ2
σ̇2 = − k

T 2I
σ1 − Γ

I |σ2|σ2 +
1
TIσ3

σ̇3 = σ4
σ̇4 = −µFaα3σ2 − α3σ3 − α2σ4

(18)

We observe that the only fixed point of this system is the state, σ = [0, 0, 0, 0] at the origin of the
phase space, which corresponds to the stationary, unmoving state of system where no wingbeats
occur. To determine how wingbeats emerge in the asynchronous state we first linearize the system
around the origin and determine its stability. If the origin is stable, then small perturbations will
die down to rest at the fixed point and no wingbeats will occur (note, linear stability does not
guarantee this globally over the phase space). If the origin is unstable then small perturbations
will grow and eventually be counterbalanced by the nonlinear damping from aerodynamics. Linear
stability analysis determines when perturbations grow and the emergent oscillatory properties of
the system.

We linearize the system by neglecting only the aerodynamic damping which scales as the square
of small perturbation amplitudes. This leads to the following state matrix that describes the linear
dynamics

σ̇ =


0 1 0 0

− k
T 2I

0 1
TI 0

0 0 0 1
0 −µFaα3 −α3 −α2

σ (19)

Stability and oscillatory frequency are determined by the eigenvalues of this equation. We first
determine the boundary between a stable (i.e. no oscillations) and unstable (i.e. oscillations) origin
by evaluating the characteristic equation

λ4 + α2λ
3 +

(
k

T 2I
+ α3

)
λ2 +

(
k

T 2I
α2 +

µFa

TI
α1

)
λ+

k

T 2I
α3 = 0 (20)

Examination of the real and imaginary components of the eigenvalues reveal that the instabil-
ity that leads to asynchronous oscillations occurs through a Hopf bifurcation in which a pair of
complex conjugate eigenvalues for the linearized system go unstable. The boundary between this
(in)stability is determined when the eigenvalues have no real component, λ = iω which results in
two equations

Real : ω4 − ( k
T 2I

+ α3)ω
2 + k

T 2I
α3 = 0

Imag : k
T 2I

α2 +
µFa

TI α3 − α2ω
2 = 0

(21)
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The first equation can be solved for ω2 such that ω2 = α3 (⊕) and ω2 = k
T 2I

(⊖) and substitution
into the second equation yields the relationships

⊖ → µFa = 0 (22)

⊕ → k

T 2I
α2 +

µFa

TI
α3 − α2α3 = 0 (23)

The first equation indicates that a change in stability may occur as the sign of the delayed stretch
activation force changes. However, in a muscle-driven system, Fa > 0, indicating tension force only.
Thus, we focus on the second equation. We can substitute in the definitions of α2,3 and define the
natural frequency of the system (in rad s−1) as ω2

n = k
T 2I

.

κ(1 + κ)r23 − κ
µFa

TI
r3 − (1 + κ)ω2

n = 0 (24)

This can be solved for r3 through the quadratic equation. Further, we ignore the negative valued
solution, which would produce an r3 < 0 root and is unphysical. Thus, the onset of instability is
determined by the following relationship

r3 =
κµFa

TI +

√(
κµFa

TI

)2
+ 4κ(1 + κ)2ω2

n

2κ(1 + κ)
(25)

Lastly, we subsitute the relationship for t0 (for hawkmoth parameters) into this equation yielding
the final relationship

t0 = 1.258
2κ(1 + κ)

κµFa

TI ±
√(

κµFa

TI

)2
+ 4κ(1 + κ)2ω2

n

(26)

In Figure SI2 we demonstrate the validity of the linear analysis. We plot the amplitude and
frequency of the asynchronous simulation (Kr = 0) and we also plot the real and imaginary compo-
nents of the largest eigenvalue. We see that the imaginary component of the dominant eigenvalue
matches the emergent frequency from the full nonlinear system extremely well. Furthermore, the
onset of instability agrees well with the prediction in Equation 26. For small t0, the muscle re-
sponse is very “fast” and thus will generate tension force during the stretch component of a cyclic
displacement. This resistance to stretch will dissipate energy and will not produce oscillations.
However, as the time-to-peak of the force response increases, and the muscle becomes “slower”
in response, then a cyclic displacement will produce a time-lagged rise in force that will pull in
tension during the contraction phase of the cyclic displacement and will produce work over a cycle
that drives emergent oscillations.

D. Simulation sensitivity analysis

In this section, we provide additional simulation results to demonstrate that the fundamental
results are not sensitive to system parameters. We first vary the stiffness and synchronous forcing
parameters to account for potential increased stiffness from muscle elasticity. In the second section,
we vary the asynchronous parameter κ which determines the relative rates of delayed tension rise
(r3) and fall (r3).



9

10-2 10-1 100 10-2 10-1 100
0

1

2

3

4

0

1

2

3

4

Im
(E

ig
e

n
v
a

lu
e

)

-20

0

20

40

60

-20

0

20

40

60

R
e

(E
ig

e
n

v
a

lu
e

)

a) b)

A
m

p
lit

u
e

 (
d

e
g

.)

Simulation

Theory

FIG. SI2. Comparison of the asynchronous dynamics from the linearized and nonlinear solu-
tions. The vertical dashed line on both plots corresponds to the prediction from Equation 26 for the onset
of emergent oscillations from the linear stability analysis. a) Left axis and circles correspond to the emergent
wingbeat frequency normalized by synchronous frequency versus the normalized delayed stretch activation
time to peak, to/Tn. The right axis and red line correspond to the imaginary component of the largest
eigenvalue in the linearized system. b) Left axis and circles correspond to emergent wingbeat amplitude
versus the normalized delayed stretch activation time to peak, to/Tn. The right axis and red line correspond
to the real component of the largest real eigenvalue. When the eigenvalue with the largest real component
becomes positive, stable limit-cycle wingbeats occur.

1. Variation in K and Fs

In our main results we do not consider additional elasticity contributions that may come from the
muscle. We have previously determined that passive muscle does not contribute to the elasticity of
the thorax system [12]. However, it is unknown if active muscle during contractions may induce an
additional elasticity to the thorax, although flight muscle does have the capacity to store and return
energy [13]. To estimate this we followed a procedure from recent work [14] where we estimated
the contribution of the antagonistic pair of flight muscles as twice the active stiffness of the main
downstroke [13] muscles (DLM) found by fitting a stiffness to work loop data [15]. We then tuned
the synchronous force, Fs, so that the simulation generated realistic wingbeat amplitudes of 117◦

under synchronous forcing. In the simulation that estimates active muscle elasticity, all parameters
are the same except, k = 4078 N m−1 and Fs = 2250 N.

Figure SI3 demonstrates the comparison with and without active muscle stiffness. The funda-
mental results are the same in both simulations, there exists a bridge in parameter space between
the purely asynchronous and synchronous modes where high-power and steady wingbeats are gen-
erated. At the boundaries of this bridge, the wingbeats show large fluctuations in peak-to-peak
amplitude. These results indicate that the qualitative behavior of synchronous plus asynchronous
actuation is preserved even under conservative assumptions about body and muscle mechanics.

2. Variation in κ

In our simulations and experiment, we varied a single parameter related to delayed stretch
activation, the time to peak, t0. However, there is a second parameter (κ) that governs the delayed
stretch activation force response in our model. The parameter κ determines the ratio between the
tension rise rate constant (r3) and the tension relaxation rate constant (r4) such that r3 = κr4.
For a delayed stretch activation response the tension rise rate constant must be larger than the
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relaxation rate constant, and so κ is bounded κ ∈ [0, 1]. In hawkmoth experiments, we found
κ = 0.62, which is what was used in the main paper simulations. Here we also present simulations
with κ = 0.1 and κ = 0.9 to explore how variation in this parameter influences the observed
phenomenon.

Figure SI4 illustrates the comparison of emergent frequency, power, and amplitude fluctuations
for three different values of κ. For a low κ = 0.1 we observe a wider regime of asynchronous
oscillations across t0/Tn, and as κ is increased this regime of asynchrony becomes smaller and the
value of t0/Tn for the onset of asynchronous oscillations increases. However, across all three values
of κ we observe the same qualitative features–a bridge of high-power and low amplitude fluctuations
wingbeats exists between the synchronous and asynchronous modes. These simulations indicate
that our qualitative results are not sensitive to κ.
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FIG. SI3. Comparison of simulation results with and without active muscle elasticity. Top row
shows emergent frequency and bottom row shows the standard deviation of peak-to-peak amplitude. White
lines designate boundary between asynchronous and synchronous modes. Both simulations display the same
fundamental phenomena: 1) asynchronous oscillations emerge as the normalized time-to-peak of the delayed
stretch activation response (t0/T )n) increases, and 2) a bridge of smooth sinusoidal wingbeats exists between
the asynchronous and synchronous modes of actuation.
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bridge of smooth sinusoidal wingbeats exists between the asynchronous and synchronous modes of actuation.

3. Comparison with and without body viscous damping

In the robophysical experiments, we observed that at the upper range of the asynchronous regime
the system could not produce oscillations. We speculated this was due to frictional dissipation in
the system that delayed stretch activation was not able to overcome. In insects, muscle and thorax
deformation can induce energy loss, whereas in robots Coulomb friction and viscosity may induce
energy. Thus, to examine how energy dissipation influences our results we included a viscous
damping term in the body mechanics equation and performed new simulations

Fm

T
= Iϕ̈+ Γ|ϕ̇|ϕ̇+

b

T 2
ϕ̇+

k

T 2
ϕ. (27)

We characterize the amount of viscous body dissipation through the standard damping ratio for
harmonic oscillators

ξ =
b

2T
√
Ik

. (28)
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row shows emergent frequency, middle row shows power, and bottom row shows the standard deviation of
peak-to-peak amplitude. Gray and white lines designate boundaries between asynchronous and synchronous
modes. Both simulations display the same fundamental phenomena: 1) asynchronous oscillations emerge as
the normalized time-to-peak of the delayed stretch activation response (t0/Tn) increases, and 2) a bridge of
smooth sinusoidal wingbeats exists between the asynchronous and synchronous modes of actuation. However,
viscous body damping results in the suppression of emergent asynchronous wingbeats for larger t0/Tn as
indicated by the arrow in the upper right plot.

In Fig. SI5 we compare here simulation results for ξ = 0 (as in the main text) and a modest damping
of ξ = 0.25. With viscous damping, we observe the same fundamental phenomena, the presence
of a bridge in parameter space between the asynchronous and synchronous regimes. However, in
the viscously damped case, we do observe an upper limit for t0/Tn where emergent oscillations
disappear (the same phenomena as observed in robophysical experiment). Thus, the presence of
viscous damping can influence the generation of asynchronous wingbeats and as the time to reach
peak force for delayed stretch activation increases, viscous dissipation can suppress asynchronous
wingbeats.
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