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A N I M A L  L O C O M O T I O N

Why animals can outrun robots
Samuel A. Burden1*†, Thomas Libby2†, Kaushik Jayaram3, Simon Sponberg4, J. Maxwell Donelan5

Animals are much better at running than robots. The difference in performance arises in the important dimensions 
of agility, range, and robustness. To understand the underlying causes for this performance gap, we compare natural 
and artificial technologies in the five subsystems critical for running: power, frame, actuation, sensing, and control. 
With few exceptions, engineering technologies meet or exceed the performance of their biological counterparts. 
We conclude that biology’s advantage over engineering arises from better integration of subsystems, and we iden-
tify four fundamental obstacles that roboticists must overcome. Toward this goal, we highlight promising research 
directions that have outsized potential to help future running robots achieve animal- level performance.

Animals outperform robots at locomotion. The performance gap 
is evident across scales, and it is particularly galling given that animal 
designs respect constraints that need not limit robots; for instance, 
animals must grow from a single cell, repair their own bodies, and 
contain all the machinery needed to reproduce. We seek to under-
stand the underlying causes for this performance gap by systemati-
cally comparing animals with robots.

Although the preceding observations apply to multiple locomo-
tion modalities, including flight and swimming, for tractability, we 
focus on legged locomotion, where decades of research have pro-
duced a rich robot ecosystem with biocomparable designs. For suc-
cinctness and to emphasize high- performance behavior, we will use 
the catchall phrase “runner” to refer to animals and robots that use 
intermittent contact between limbs and terrain to move and “running” 
to refer to the corresponding behavior, regardless of whether it would 
be more common or accurate to describe a behavior as walking or 
jumping. Toward these ends, we seek to answer the question, “Why 
can animals outrun robots?”

Our goal is motivated, in part, by bioinspiration and biomimetic 
approaches to design (1–3), that is, the potential to advance robotics 
by translating natural to artificial technology, as well as robot- inspired 
approaches to biology (4) and physics (5), wherein robots are used 
to advance basic science. Quantifying the performance of “proof- 
of- concept” designs embodied by extant animals sets aspirational 
benchmarks for the robotics community, highlights performance 
limiters, and potentially reveals design principles. We expect that 
this study will help catalyze advancements in bioinspired and biohy-
brid robotics and extremes of performance achievable by autonomous 
robots (6).

Engineered and biological runners are built differently. Robots 
are assembled from discrete components at the macroscale, whereas 
animals are formed from heterogeneous structures grown at the 
nanoscale. Additionally, the two technologies use different physical 
phenomena and materials for power, sensing, actuation, and con-
trol. However, both animals and robots are built to run (among 
other tasks). Given that this shared objective is achieved using vastly 

different design paradigms, it is not obvious how to compare animal 
and robot runners. Thus, we consider multiple levels of analysis (7, 
8), first by quantifying the performance gap between the systems as 
a whole, as in Fig. 1, and subsequently by comparing performance 
across the five subsystems critical for the task of running illustrated 
in Fig. 2. Last, we conclude by synthesizing our findings to propose 
fruitful future directions for running robot research.

In the following subsections, we compare performance measure-
ments from the literature on animal physiology and robot design. 
The metrics that we choose are largely scale invariant, at least above 
a minimum size where engineered systems struggle, and are mea-
sured in diverse taxa, including vertebrates, invertebrates, and robots. 
We exclude technologies not integrated into existing autonomous 
runners, for instance: Spider silk is very strong, but it is not used as 
a structural material in animal locomotion; nuclear reactors can 
power submarines but have not been integrated into running robots.

A true meta- analysis remains out of reach because we found no 
principled weighting by which the performance of such diverse 
organisms and machines could be distilled into an average value. 
Instead, we selected data from representative systems to informally 
assess whether and how biological components exceed the perfor-
mance of their engineered counterparts; these data are summarized 
in Fig. 3. Because a comprehensive metric table with citations would 
consume this manuscript, we present the details in a supplementary 
document. We encourage the reader not to skip the supplement but 
instead read it for a deeper look at the component metrics, data, and 
rationale underpinning our assessments.

SYSTEM PERFORMANCE
Although the claim that animals outperform robots at running may 
sound uncontroversial in 2024, it is, nevertheless, worthwhile to 
consider how to quantify the performance gap. We think that a 
runner should have range to operate independently over the dis-
tances required, agility to reach and traverse surfaces in its environ-
ment, and robustness to maintain range and agility despite changes 
to the runner and its environment. Although running performance 
could be measured along other axes, these three nonredundant 
metrics are commonly studied and of paramount importance for 
animal fitness and robot autonomy (9).

Range can be directly quantified as the distance traveled during 
autonomous running in a specific environment. This distance is 
determined by the onboard energy supply as well as the efficiency of 
energy conversion. The latter factor is conventionally measured by 
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the cost of transport, defined as the amount of energy required to 
move a unit weight of a runner over a unit distance (10). The farthest 
walk by a legged robot on a single battery charge was Ranger’s 
65- km trek over the course of 31 hours (11). Ranger’s cost of trans-
port is impressively half that of human walking, but there are impor-
tant caveats. First, the robot’s batteries have about 50- fold less useful 
energy per unit mass as compared with animal fat; the average hu-
man has energy reserves to continue walking long after the robot’s 
batteries are depleted. When allowed to refuel along the way, humans 
can exhibit extraordinary endurance: Exceptional athletes can run 
hundreds of kilometers over multiple days in a single outing. They 
can also do so over rough terrain, whereas Ranger exploits the 
smoothness of the track that it was designed to walk on—a small 
rock could cause it to stumble and fall. Outside of controlled envi-
ronments, robot range is a distant second to that of animals.

The agility of legged robots has been quantified using running 
speed, jumping height, turning rate, and more. Legged robot devel-
opment has long been guided by a need for speed, resulting in 
bipeds, quadrupeds, and hexapods with speeds approaching those 
of similar- sized animals on regular terrain (12–19). However, ani-
mals are still faster at all scales, and the performance gap widens 
when considering irregular or deformable terrain (20, 21). Some 
legged robots have leaped at the task of jumping, either specializing 
entirely (22) or by adapting an existing runner (23). New heights 
have been reached by legged robots using bioinspired elastic energy 
storage, but even these are still surpassed by animals of similar mass. 
Rapid robot turning has been occasionally synthesized (24, 25), 
but animals can redirect momentum “on a dime” (26–31). Last, 
although feedback control can enable robots to recover from 
substantial perturbations (32), the ability of animals in this regard 
is unmatched (33). Overall, animals out- run and out- maneuver 
running robots.

Robustness is deceptively easy to conceptualize yet devilishly dif-
ficult to quantify. As a starting point, we consider how agility and 
range are maintained in the presence of changes to the runner or its 
environment. Horses can increase body mass 20- fold as they grow 
from foal to full size, and rhinoceros beetles can carry 30 times their 
body weight without fatiguing. Animals can survive bone fracture 
(34) or limb loss, with many lizards and insects voluntarily shedding 
appendages to distract predators (35), and the phenomenon is so 
common in the latter group as to motivate a “spare leg hypothesis” 
(36). In contrast, robot range and agility decrease precipitously 
when large payloads are added or limbs are damaged. Robots de-
signed to walk or run on flat ground can be made to plod over rough 
terrain under inclement conditions (37), but animals are unimpeded 
by terrain variations upward of their height (21, 38–41) and readily 
run over, under, and through obstacles like mud, snow, vegetation, 
rubble, and crevices (42, 43). On granular media, robot running 
speed can depend sensitively on design, control, and environmental 
parameters (44), with animals handily outpacing robots in their na-
tive ecologies (20). Overall, animals excel at maintaining perfor-
mance despite changes that would be catastrophic for existing robots.

We conclude that animals outperform robots at running along 
the three key axes of range, agility, and robustness, as illustrated in 
Fig. 1 and corroborated in other recent work (45). In what follows, 
we seek to understand the cause of this performance gap. Given that 
animals and robots are generally designed and built using different 
technologies, it is possible that differences in the parts give rise to 
differences in the whole. To test this hypothesis, we coarsely divided 
runners into the five subsystems illustrated in Fig. 2: a power system 
to store and deliver energy; a frame for support and leverage; actua-
tors to modulate mechanical energy; sensors to perceive self and 
environment; and a control system to transmit and transform sensor 
and actuator signals. Of course, our “subsystems” are abstractions, 

and runners cannot always be cleanly 
divided, particularly in the case of ani-
mals. We will take care in what follows 
to note when separating subsystems is 
messy work.

POWER SUBSYSTEM PERFORMANCE
The ideal power supply for running stores 
a large amount of useful energy and 
delivers it efficiently to the other sub-
systems with minimal added mass. The 
three main types of power plants used 
in autonomous runners are gas engines, 
electric batteries, and metabolism. All 
three convert stored chemical energy to 
power running: Engines convert gas 
to movement, batteries convert chemical 
bonds to electricity, and metabolism con-
verts fat to adenosine triphosphate (ATP).

Because a runner’s endurance is ulti-
mately limited by its stored energy, we 
compare mass- specific stored energy, de-
fined as the energy delivered by the power 
plant normalized by fuel mass. Biology 
outperforms engineering by this metric, 
with values more than double those of 

Fig. 1. System- level performance of animal and robot runners. (A) Representative performance of robots (blue) 
and animals (orange) in the three- dimensional space defined by range, agility, and robustness axes. (B) Projection of 
(A) onto agility- range plane. (C) Projection of (A) onto agility- robustness plane. Animal running performance now 
pareto- dominates that of robots at all scales.C
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combustion engines and 50- fold more than batteries. There are two 
main reasons for biology’s edge: Oxidative metabolism within mito-
chondria converts fat to ATP with a remarkable efficiency of about 
70% (46) compared with 25% in engines (47); and, whereas adipose 
tissue is almost 90% fuel (48), gas tanks can be 20% of the mass of 
the fuel they carry (49).

Because locomotion is among the most power- intensive behav-
iors that runners perform, we compare mass- specific delivered power, 
defined as the sustainable power delivered normalized by total power 
plant mass. Metabolism meets or exceeds engine performance by 
this metric (47, 50), but batteries outperform both using the natively 
high power output of lithium- ion cells and relatively light electronics 
and packaging. Although animals may transiently achieve higher 
peak power outputs by depleting the supply of ATP in muscles, the 
energy in stored ATP is quite limited and, if used on its own, could 
only sustain performance for a few seconds (51, 52).

Because fuel can potentially be harvested from the environment 
to extend running distances, we compare mass- specific refueling 
power, defined as the energy rate of refueling divided by the mass of 
the refueling frame. By this metric, gas tanks can be refueled an 
order of magnitude faster than a battery can charge or digestion can 
process biological matter. To put this in perspective, a human would 
only need to refuel at the gas rate for a fraction of a second to gain 
the energy it needs for each day. The actual human refueling rate 
limits 100- day running to a range of about 40 km per day (53).

In summary, the performance of engineered power plants can 
exceed that of their biological counterparts in the rates at which they 
refuel and deliver energy, although biology now has the edge in 
energy storage. The development of portable power plants capable 
of delivering both high specific energy and high specific power is 

considered one of the grand challenges for mobile robots (6). Fortu-
nately, there is no known fundamental barrier to creating engi-
neered power plants that have a superior combination of storage 
and energy- delivering capabilities (54).

FRAME SUBSYSTEM PERFORMANCE
The ideal frame for running combines material and geometry to 
support and propel the body overground while being light and fail-
ure resistant. Running robot frames are generally built from rigid 
connections between steel, aluminum, or carbon fiber struts using 
linear or rotary joints. Animal frames have two primary forms: Ver-
tebrates have an endoskeleton made from bone connected by soft 
tissue, and insects have an exoskeleton made from hard cuticle con-
nected by soft flexures (55). A runner’s frame is loaded by multiaxial 
forces that vary over time (56), making it susceptible to multiple 
modes of failure, including buckling and yielding. Failure modes are 
affected by the frame’s geometric and material properties, and brac-
ing against one failure mode may weaken the frame against another 
(57). A simple yet instructive analysis is to consider a macroshape 
shared between robot and animal frames (55), a cylindrical tube, 
and evaluate material resistance to failure modes dominated by stiff-
ness and strength.

Because the body’s weight must be supported throughout run-
ning without buckling, we compare density- specific stiffness, de-
fined as a material’s modulus of elasticity normalized by its density. 
Carbon fiber outperforms the other materials by this metric by a 
factor of 3 to 5, with cuticle, bone, aluminum, and steel being rough-
ly comparable. Because limbs must generate large forces to propel 
the body overground without breaking, we compare density- specific 

strength, defined as a material’s stress 
before fracture normalized by its density. 
Carbon fiber again outperforms the other 
materials by this metric by an order of 
magnitude; the substantial density of steel 
makes it the lowest performer in the group. 
In practical terms, this means that a carbon 
fiber limb could support a heavier body 
and enable more agile maneuvers that 
would otherwise break a bone, fracture 
an exoskeleton, or snap a strut made of 
aluminum or steel with similar mass.

Because frames and joints often store 
and return energy, we compare mass- 
specific energy, defined as a material’s 
strength squared normalized by its stiff-
ness and density. In this metric, carbon fi-
ber outperforms the other materials above 
by a factor of 3 to 10. However, there 
are other materials, both engineered and 
biological, that have exceptional spe-
cific energy that can be used for the sole 
purpose of storing and returning energy. 
For example, resilin is used in insect 
jumpers (58) and tendon in vertebrates 
(59). Both have higher specific energy 
than carbon fiber, but not higher than 
what is achievable by engineered rubber 
and Kevlar (60).

Fig. 2. Five subsystems critical for running. (A) Block diagram showing interconnections among the power, frame, 
actuation, sensing, and control subsystems as they interact with the environment (orange, yellow, red, blue, light red, 
and black, respectively). Solid arrows indicate transduction of force or energy, and dashed arrows indicate transmis-
sion of information. (B) illustration of the five subsystems overlaid on the fastest running animal (cheetah): fat and 
metabolism; bone skeleton; muscles; visual, vestibular, and proprioceptive sensors; nervous system. (C) illustration of 
the five subsystems overlaid on the fastest autonomous running robot (wildcat): gas engine or electric battery; 
metal or carbon fiber struts; hydraulic or (piezo)electric motors; vision, iMU, and joint sensors; computer network.C
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In summary, engineered frames built from carbon fiber can be 
much stiffer and stronger than biological skeletons built from bone, 
cuticle, aluminum, or steel; metals may outperform biology with 
respect to stiffness but underperform in strength. Animal frames 
now exhibit a greater diversity of microshapes (for instance, trabec-
ular bones have remarkable crack propagation resistance) that offer 
advantages beyond our metrics (61). However, a growing catalog of 
materials and fabrication techniques available to robots may provide 
similar advantages (6, 62).

ACTUATION SUBSYSTEM PERFORMANCE
The ideal actuators for running enable rapid changes in runner mo-
mentum with minimal added mass. Animal runners exclusively ac-
tuate their limbs with muscle, and most autonomous running robots 
use electromagnetic motors at vertebrate scales or piezoelectrics at 

insect scales. The physical principles governing motors, piezos, and 
muscle are different: Motors produce force from the flow of current 
in a magnetic field, piezos use crystal properties to convert electric 
fields to mechanical pressure, and muscles produce force through 
chemical reactions that generate length changes in nanoscale pro-
teins. We exclude other actuators that have been deployed in run-
ning robots, including hydraulics and artificial muscles (63), because 
motors and piezos are sufficient to justify our quantitative conclu-
sions below.

Because running requires high forces to support the body and 
move the limbs, we compare mass- specific peak torque, defined as 
the maximum torque normalized by the mass of the actuator and its 
transmission. Muscles can outperform direct- drive motors and 
bimorph piezos (64) by a factor of 2 to 5 in this metric. Although 
transmissions can theoretically multiply torques by arbitrarily high 
gear ratios, the mass added and efficiency lost yield diminishing 
returns in this metric. Nevertheless, the performance gap between 
motors and muscles can be eliminated at the vertebrate scale by 
pairing motors with higher- ratio transmissions, like harmonic 
drives (65) or ball screws (66), and series compliance to provide 
backdrivability (67).

Because running agility is limited by the rate at which actuator 
output can be converted to a change in momentum of the runner, 
we compare mass- specific power, defined as the mean mechanical 
power over a gait cycle normalized by the mass of the actuator and 
its transmission. By this metric, peak performance of EM motors 
exceeds that of muscle by one or more orders of magnitude, and 
piezos are comparable to muscle when used for running. Sustained 
performance in motors, piezos, and muscles alike is constrained by 
thermal management and energy supply. Although animals use 
spring- assisted power amplification to overcome actuator limita-
tions (68), robots can also use these mechanisms (22).

In summary, the performance of motors with high- ratio trans-
missions and series compliance can meet or exceed that of muscles 
in torque and power density, whereas piezos only match muscle in 
the latter and are at a disadvantage in the former. Motors and 
piezos have an advantage over muscles in their efficiency of energy 
transduction, which can exceed 90%, whereas muscle fiber effi-
ciency in most animals is closer to 30% [under 63% in the most 
extreme case measured; (69)]. Hydraulic actuators may exceed the 
torque and power density of motors and muscles, but their effi-
ciencies are often much lower than either, and they require a com-
plex and heavy fluid system in parallel with the electrical systems 
used for sensing and control. Natural muscles’ variable shapes and 
inherent scalability provide packaging advantages not available in 
motors, easily adding degrees of freedom where needed, distribut-
ing actuation mass elegantly across the body, and providing failure 
tolerance through redundancy. The diverse linear actuator tech-
nologies known as “artificial muscles” may offer similar advan-
tages but now have an equally diverse set of limitations compared 
to motors.

SENSING SUBSYSTEM PERFORMANCE
The ideal sensor suite for running delivers the actionable informa-
tion (70) needed to move quickly overground. There are two fun-
damental sensing modalities relevant to running: electromagnetic 
and mechanical. Eyes, cameras, and LIDAR (light detection and 
ranging) are examples of the former; vestibular systems, inertial 

Fig. 3. Subsystem- level performance of animal and robot runners above 1 kg. 
Performance in each subsystem is compared using multiple performance metrics 
and one or more engineering technologies. the highest- performing quantities 
in each row are bold (see the Supplementary Materials for comparisons at smaller 
scales).C
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measurement units, and force transducers are examples of the 
latter. The mechanistic details differ in biology and engineering: 
Animals sense light via chemical excitation from photon absorp-
tion and strain via ion channels that open in response to the phys-
ical deformation of membranes or molecules; robots sense light 
via electrical excitation from photon absorption and mechanical 
deformations via strain, magnetic fields, and optics. However, 
both vision and mechanosensation technologies generally trans-
duce sensory cues into analog electrical signals that are subse-
quently encoded into digital signals.

Because the information provided by a sensor is fundamentally 
limited by its ability to perceive change in the world, we compare 
threshold sensitivity, defined as the smallest unit of input that results 
in a resolved response from the sensor. Both biological and engi-
neered sensors can nearly achieve theoretical limits: single photons 
and microstrains. For example, biological photoreceptors can re-
solve individual “quantum bumps” of electrical activity from ab-
sorption of single photons (71), similar to single- photon avalanche 
diodes in semiconductors (72). The ubiquitous invertebrate cam-
paniform sensilla can detect strains as small as proteins (73), where-
as hair cells in the mammalian vestibular and auditory system go 
further still (74). However, engineered strain gauges can be many 
orders of magnitude more sensitive (75).

Robots generally use a handful of sensors, whereas animals 
have large numbers distributed throughout their bodies. Because 
redundant distributed sensors can yield richer data more robustly, 
we compare the number of sensors in each modality. The number 
of rod and cone cells in a human eye (74) is comparable to the 
number of pixels in the latest smartphones. Invertebrate com-
pound eyes have far fewer individual receptors, with cockroaches 
having comparable numbers to LIDAR arrays (76). However, ani-
mals have many orders of magnitude more strain sensors than 
robots. Humans, for instance, have roughly 200,000 tactile recep-
tors in addition to 50,000 stretch receptors (77, 78). Insects can 
have thousands of individual campaniform sensilla to detect 
exoskeleton strains, thousands of mechanosensitive neurons in 
chordotonal organs that detect internal strains, and hundreds to 
thousands of other less well- characterized mechanosensory hairs 
and sensilla (79).

In summary, biological and engineered photoreceptors are com-
parable in their overall counts and ability to detect visual stimuli. 
Although engineered mechanoreceptors can detect much smaller 
stimuli than biological ones (74, 75), biology’s ability to integrate 
staggering numbers of mechanosensors distributed throughout 
bodies, including the electrical system needed to innervate the 
sensors, is remarkable. There are robustness advantages to the 
redundant mechanosensing streams in animals, given that failure 
of any particular sensor need not halt a runner in its tracks. Fur-
ther, the ability to sense throughout the body may also confer 
advantages for agility, because actionable information may arise in 
any nook or cranny.

Another potentially interesting comparison is the cost associated 
with sensing. In animals, neural activity in sensory regions can be 
substantial (for instance, 8% of resting metabolic rate for the blow-
fly retina), placing evolutionary pressure on the size and processing 
of nervous systems (80, 81). However, during movement, metabolic 
rate increases up to 50- fold (82). Together, these observations 
imply that the contribution of sensing to the overall energy budget 
during running is low and therefore is not predictive of overall 

performance differences, even if they might still be important in 
the overall fitness of the animal.

CONTROL SUBSYSTEM PERFORMANCE
The ideal controller for running transmits and transforms sensor 
and actuator signals to produce versatile behavior. Although ani-
mals can walk in the absence of large parts of their nervous sys-
tems (83) and robots can walk without computers (84), electrical 
control systems are used to run. The physical components and 
mechanisms differ in biological and engineered control systems: 
Neurons transmit action potentials through axons and synapses 
using the diffusion of charged molecules; electrical circuits and 
networks transmit binary or analog signals on wires using electro-
magnetic waves. Because implementing a control policy requires 
communication and computation, we consider both in what fol-
lows. For the former, we compare axons to network cables; for the 
latter, we compare natural and artificial spiking neural networks. 
Larger runners have more time to react to sensor signals before 
they hit the ground, so we normalize time by the natural period of 
a runner’s limb.

Bandwidth and latency fundamentally limit controller perfor-
mance (85), so we compare both. Many axons can be bundled into a 
single nerve to increase bandwidth without affecting latency, so 
we normalize bandwidth by the cross- sectional area of the commu-
nication channel. The bandwidth of a standard Ethernet cable at 
10 megabit/s is at least 10,000 times greater than the fastest single 
axon, but a bundle of 1 million human axons has comparable area-  
and period- specific bandwidth (86), whereas gigabit Ethernet and 
other computer network protocols are orders of magnitude faster 
still. In addition, period- specific latency is at least 1000 times longer 
in nerves than an Ethernet cable, and it is impractical for biology 
to close this gap (87). At the smallest scales, buses connecting inte-
grated circuits can have orders of magnitude higher bandwidth 
and lower latency than Ethernet and, thus, even greater advantages 
over axons.

Effective controllers quickly compute complex policies. The time 
required for computation in spiking neural networks is proportion-
al to the period- specific latency of a neuron, the time constant of 
which is on the order of milliseconds for natural neurons (88) and 
shorter than microseconds for artificial neurons (89). However, 
the number of neurons and synapses differs vastly in natural and 
artificial networks, with biology outperforming engineering in this 
metric by orders of magnitude at scales ranging from insects to peo-
ple. However, it is worth remembering that animals rely on their 
nervous systems to implement a rich repertoire of behaviors, includ-
ing attracting a mate, finding food, and avoiding predators. It is 
unclear how much brain is needed for locomotion, given that para-
sitic wasps with fewer than 400 neurons can fly, feed, and find 
hosts (90).

In summary, computer networks vastly exceed the performance 
of nervous systems in latency and bandwidth of communication 
and computation, but artificial neural networks are at a substantial 
disadvantage relative to the size and connectivity of biological 
networks. Animals cannot practically decrease sensorimotor delay 
by the orders of magnitude that would be required to compete with 
robots’ communication channels; this fundamental limit surely 
affects control strategies, for instance, by favoring the use of internal 
models (87). Although neuromorphic circuits will continue to 
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increase in complexity, it remains to be seen whether bigger brains 
are better (91) for running and how to make most effective use of the 
limited brainpower available to robots in the meantime (92).

DISCUSSION
Returning to the hypothesis posed at the outset, we found some lim-
ited evidence, summarized in Fig. 3, that performance differences at 
the level of subsystems favor biology, partly explaining why animals 
outrun robots. Fat stores a lot of energy per unit mass, giving ani-
mals an advantage in range, particularly compared with robots 
powered by batteries. Muscle has higher torque density than piezos 
and motors paired with conventional transmissions, likely confer-
ring some advantage in agility. Although biological sensors are no 
more sensitive than their engineered counterparts, a large number 
of them can be distributed throughout the body, lending robustness 
through redundancy and benefitting agility by providing rich sensor 
streams from each body part. Last, brains can theoretically imple-
ment much more complex transformations than current integrated 
circuits because of their vastly greater quantities of neurons and syn-
apses, potentially leading to advantages in range, agility, and robust-
ness. Biological subsystems fare better with respect to robots at 
insect scales than at human scales, indicating substantial headroom 
for component performance improvements in roach- sized runners.

However, a simple thought experiment demonstrates that these 
differences in runner parts do not explain most of the gap in run-
ning performance. Suppose we could build cyborg runners using 
the highest- performing components and subsystems from biologi-
cal and engineering technologies: a fat- burning, carbon- fibered, 
muscle- bound monstrosity with distributed sensors and low- 
latency engineered communication channels, all controlled by 
mind- bogglingly complex spiking neural networks. Would roboti-
cists be able to create cyborgs whose running performance com-
petes with those of animals? This experiment could be carried out 
in the world of computational simulations, where runner designs 
are not constrained by the innumerable practical obstacles that 
make our imagined cyborg physically unrealizable. Even in the 
most favorable of these worlds, where frames never break and 
nearly unlimited computational resources control ideal torque 
sources using perfect state information, we suspect that the perfor-
mance of simulated runners would not approach the agility or 
robustness of animals in the real world.

If not the performance of subsystems, what is the explanation for 
why animals can outrun robots? By elimination, the problem must 
lie with our lack of understanding of how to construct and control a 
high- performance “whole” using existing high- performance “parts.” 
This is a forgivable shortcoming because at least four fundamental 
obstacles must be overcome to tackle this integration challenge. 
First, we lack quantitative metrics for evaluating the many dimen-
sions of running performance, yet these are necessary for improving 
robot designs using systematic engineering processes. We qualita-
tively discussed agility and robustness at the outset, but there are 
only a handful of narrowly defined ways to measure these proper-
ties. Even range, which we conflated with distance, is only well- 
defined once the runner’s behavior and environment are specified. 
The second and third obstacles are trade- offs and emergence. Strin-
gent trade- offs potentially arise when subsystems combine because 
performance of one component might constrain that of another. The 
opposite is also possible during integration, because emergence is 

where the behavior of the whole is different than, and irreducible to, 
the behavior of the parts. The composition of subsystems, especially 
when feedback is involved, can transform the dynamics for better or 
worse. These two obstacles are two sides of the same coin in the 
sense that, at their core, they are unknown but potentially transfor-
mative interaction dynamics and that performing the integration is 
the only way to expose these dynamics. However, there are a huge 
number of ways that the parts can be combined, each producing dif-
ferent possibilities for trade- offs and emergent behavior. Unfortu-
nately, the fourth obstacle, the curse of dimensionality (93, 94), 
admonishes us that these high- dimensional integration spaces can-
not be explored by brute force alone. Consequently, it is challenging 
to find good mechanical designs in the high- dimensional space of 
candidate designs and good control policies in the high- dimensional 
space of candidate policies.

How can the daunting challenges of integration be overcome? 
Given that tackling the entire system- level problem is daunting, de-
composing into subproblems is helpful. The conventional subsys-
tems that we evaluate above are one such decomposition. However, 
performance in these subsystems has been driven by industry’s need 
to efficiently manufacture at scale rather than the roboticist’s desire 
to build the ideal subsystem for running. Instead, we advocate for 
decomposing into “functional subunits”: groupings of parts that re-
veal the trade- offs and emergent behavior arising from their integra-
tion. As an example, consider the series elastic joint actuator (95, 
96): Composed of elements of frame, sensing, actuation, and low- 
level control, its design is subject to the integration challenges and 
trade- offs that we argue are central to the performance deficit of 
running robots. At the same time, it features emergent behavior 
greater than the sum of its parts, because it is torque-  and power- 
dense while maintaining backdrivability and robust force control, 
simplifying high- level control. The complexity of functional sub-
units should be more tractable than that of a whole robot, enabling 
tight integration and performance optimization for their subtasks. 
They should have reduced and predictable ways of interacting me-
chanically and electrically with other functional subunits to simplify 
integration into the broader system. The reduced subset of possibili-
ties ought to make the overall design space more feasible to navigate 
while still allowing a rich set of runners to explore. As a final note, 
functional subunit decomposition is compatible with proven tools 
for building and analyzing runners. For instance, hierarchical mod-
els of varying degrees of complexity (97, 98) have revealed how 
reduced- order emergent behavior is embodied in more complex 
machines (99, 100)—functional subunits could facilitate this em-
bodiment. Additionally, information- based metrics of control ar-
chitectures like centralization (101) and control effort (102, 103) 
provide potential design criteria at an integrative level applicable to 
functional subunits and whole robots alike. Although we believe 
that this approach of decomposing the problem of runner design 
into functional subunit design will be fruitful, we also understand 
that it will require creativity, inspiration, and discovery.

Lest roboticists feel sheepish about their machines’ performance, 
we note that biology has a substantial head start over engineering to 
explore design and policy spaces. At the lineage level, there have been 
1000 to 10,000,000 times as many generations of animals as robots. 
Considering population size, there have been 1000 times more 
humans than robots (of all kinds) and perhaps 1 quintillion times as 
many individual insects. In terms of individual experience, animals are 
less sedentary and have longer lifespans than robots, with ambulatory 
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adult humans taking roughly 10,000 steps per day over decades. In 
light of these observations, it strikes us that the rate of advancements 
has been markedly faster in robots than in animals.

There are several key factors contributing to the disparity be-
tween the pace of technological innovation in biology and engi-
neering. Designing and prototyping in engineering is a rapid and 
systematic process compared with the undirected search of evolu-
tion. Animals must survive to pass on their genes, limiting experi-
mentation from generation to generation. Additionally, animals in 
one phylogenetic branch generally cannot benefit from innovations 
in any other: An adaptation that improves running in a cockroach 
provides no benefit to a cheetah. In contrast, advancements demon-
strated in one robot are readily transferred to others. Furthermore, 
robots have access to sources of parallelism unavailable to animals: 
Experience can be accumulated on multiple physical and simulated 
robots simultaneously, and these data can be shared directly. Fur-
ther, these advantages are only limited by the resources invested, for 
example, by the number of researchers in robotics labs, robots on 
the ground, or servers in the cloud.

We are optimistic that legged robots will someday outrun ani-
mals. To hasten this outcome, we conclude by highlighting emerg-
ing approaches that we regard as potentially transformative. The 
multidirectional exchange of principles and approaches among 
engineering, biology, and physics (1, 2, 4–6, 92) has yielded a won-
derful constellation of insights and creative designs that have pushed 
the boundaries of knowledge and possibility. Going forward, sys-
tematic comparative studies (rather than single- species inspiration) 
could reveal generalizable principles for exceptional performance 
by providing evolutionary context for the factors shaping organisms 
(104). Distributing energy, sensing, actuation, and control through-
out robot frames, as animals do, may advance autonomy (62, 105). 
Bridging the “sim- to- real” gap with better computational models of 
robot interaction with the environment (20, 44) could markedly ac-
celerate exploration of design and policy spaces by reducing the 
number of physical prototypes that need to be built. Bodies can be 
made easier to control by offloading computation into morphology 
(84, 106); this approach remains underdeveloped, but continued 
advances in material robotics may prove transformative (62). Sys-
tematically exploring trade- offs with respect to multiple perfor-
mance metrics promotes reuse of parts in disparate behaviors (6).

The lesson that we take from biology is that, although further 
improvements to components and subsystems are beneficial, the 
greatest opportunity to improve running robots is to make better 
use of existing parts. We advocate for integrative exploration of 
design and policy spaces.
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