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Abstract—Traditional models of motor control typically op-
erate in the domain of continuous signals such as spike rates,
forces, and kinematics. However, there is growing evidence
that precise spike timings encode significant information that
coordinates and causally influences motor control. Some existing
neural network models incorporate spike timing precision but
they neither predict motor spikes coordinated across multiple
motor units nor capture sensory-driven modulation of agile
locomotor control. In this paper, we propose a visual encoder
and model of a sensorimotor system based on a recurrent
neural network (RNN) that utilizes spike timing encoding during
smooth pursuit target tracking. We use this to predict a nearly
complete, spike-resolved motor program of a hawkmoth that
requires coordinated millisecond precision across 10 major flight
motor units. Each motor unit enervates one muscle and utilizes
both rate and timing encoding. Our model includes a motion
detection mechanism inspired by the hawkmoth’s compound eye,
a convolutional encoder that compresses the sensory input, and a
simple RNN that is sufficient to sequentially predict wingstroke-
to-wingstroke modulation in millisecond-precise spike timings.
The two-layer output architecture of the RNN separately predicts
the occurrence and timing of each spike in the motor program.
The dataset includes spikes recorded from all motor units during
a tethered flight where the hawkmoth attends to a moving robotic
flower, with a total of roughly 7000 wingstrokes from 16 trials
on 5 hawkmoth subjects. Intra-trial and same-subject inter-trial
predictions on the test data show that nearly every spike can
be predicted within 2 ms of its known spike timing precision
values. Whereas, spike occurrence prediction accuracy is about
90%. Overall, our model can predict the precise spike timing
of a nearly complete motor program for hawkmoth flight with
a precision comparable to that seen in agile flying insects. Such
an encoding framework that captures visually-modulated precise
spike timing codes and coordination can reveal how organisms
process visual cues for agile movements. It can also drive the
next generation of neuromorphic controllers for navigation in
complex environments.

Index Terms—sensorimotor control, precise spike timings,
recurrent neural network, insect flight

I. INTRODUCTION

Animal locomotion poses many challenges to an animal’s
sensorimotor processing, especially for goal-directed tasks in
dynamic and uncertain environments. To understand these
challenges, some neural network models can predict firing
rates or other continuous representations of neural parameters
or can classify sensory stimuli and motor responses. These
models are integrated with traditional motor control models
that typically operate in the domain of continuous signals
such as muscle forces, muscle activation, and limb and body
kinematics [1], [2]. However, they do not capture a key aspect
of neural signals essential for movement: temporal precision
of spikes and coordination of neural activity. There is growing
and ubiquitous evidence that neurons across the sensorimotor
cascade encode information in the precise timings of spikes –
not just for sensory information encoding and processing, but
for the generation of motor behavior as well [3]. To respond to
external stimuli, especially during periodic gaits, the nervous
system uses a control strategy making slight modulations to
the temporally consistent motor spiking pattern coordinated
across synergetic muscles [4], [5]. Together with spike rate,
millisecond-precise spike timings have been shown to encode
a significant (and sometimes greater) amount of information
across insect flight control and turning maneuvers [6], [7],
songbird acoustic structures [8], respiration [5], human move-
ment [3], muscle coordination [7], and insect escape behaviors
[9]. Beyond understanding motor control, such models can
also potentially motivate the next generation of neuromorphic



spike-based controllers for goal-directed robot navigation in
dynamic and uncertain environments.

The use of artificial neural networks (ANNs) is on the
rise as predictive models of animal behavior and locomotion
based on neural data, for their ability to capture complex
and nonlinear relationships between neural activity and body
mechanics [10]–[12]. Given the importance of incorporating
neural spiking patterns into neuromechanical models, some
recent algorithms have been developed to train spiking neuron
models to spike either at rates that correlate with the given
motor control outputs or within short time windows. For
instance, ReSuMe and SPAN can learn temporally precise
spike patterns to solve classification and decision-making tasks
[13], [14]. Chronotron spiking neurons can learn to generate
precisely timed output spikes in response to precisely-timed
input spike patterns, and thus can process entirely temporally
coded information [15]. Another learning algorithm is capable
of training spiking neural networks (SNNs) to generate the
desired sequence of spikes within precisely specified timing
windows [16]. However, the capability of some of these
algorithms to predict precise spike timings is yet to be
shown beyond feedforward or two-layered networks trained on
simulated sensory input data. Other algorithms that currently
exist cannot capture the features of the nervous system that
generate precisely-timed motor spikes modulated by varying
sensory stimuli and coordinated across multiple motor units.
Nonetheless, they serve as motivation for building an ANN-
based model that can accurately predict spike timings across a
motor program for agile movement and thereby interface with
neuromorphic control models.

To begin with, what minimal ANN-based modeling frame-
work might be sufficient to learn the time-dependent dynamics
of the sensorimotor system and motor control for predicting
underlying spiking patterns that enable movement? Learning
these dynamics is very data intensive which makes neural
network approaches ideal for this purpose. The presence of
time dependencies in the data means that recurrence would
be a useful feature to incorporate into the model. The use
of recurrence is biologically motivated and recurrent neural
networks (RNNs) are widely used to reliably model dynamical
systems in computational neuroscience [17]. Therefore, using
a bottom-up approach in this paper, we propose a model of a
sensorimotor system based on a simple RNN that utilizes tem-
poral encoding of sensory information on a moving target to
precisely predict the spike-resolved coordinated motor output
that tracks the target. Our model is based on a hawkmoth’s
(M. sexta) visuomotor system in the context of floral target
tracking. From spike-resolved electromyography (EMG) sig-
nals recorded from a hawkmoth generating steering maneuvers
while tracking a floral target, our model uses an RNN to learn
the patterns and precise timings of spikes that are coordinated
across 10 major flight muscles, each acting effectively as a
single motor unit, as opposed to 10 independent channels. It
also features a motion detection mechanism inspired by the
hawkmoth’s compound eye.

Our model organism, hawkmoth M. sexta, is a remarkably

agile flier that can not just navigate quickly through dense
and cluttered environments at low (< 1 lux) light levels [18],
but sustain long bouts of hovering while feeding from flowers
swaying in the wind [19]. The spike timing information on
its steering response to a floral target is thrice the amount of
information in the spike count [7]. The spiking patterns of its
10 major flight muscles are periodic and contain shared near-
complete information on coordination for flight control [7].
On top of the spike pattern periodicity, its nervous system’s
spike time coding strategy for motor control is sub-millisecond
precise and consistent across muscles which actuate wing
movement to generate aerodynamic and inertial forces for
rapid steering maneuvers [6], [7], [20]. A recently developed
method can accurately decode the hawkmoth’s instantaneous
forces and torques from its comprehensive spike-resolved mo-
tor output [21]. Hence, given the time-dependencies, precision,
completeness and coordination in the hawkmoth’s flight motor
program, in this paper, we explore whether a simple RNN-
based model is sufficient to encode the visual modulation
of the hawkmoth’s comprehensive motor program. Beyond
predicting a coordinated set of motor spikes for an agile
sensorimotor task, such a model can potentially be a critical
component of a neuromechanical framework that captures
precise timings of neural signals not just to encode information
and accomplish coordination but also to make causal and
context-dependent predictions about locomotion.

II. METHODS

The modeling task at hand is to predict the visuomotor
response of the hawkmoth, M. sexta, in terms of precisely-
timed spike patterns of its nearly complete set of spike-
resolved motor signals for flight control. A moving floral target
drives variation in spike numbers and timings. The complete
modeling framework as a transformation from visual stimulus
to the comprehensive spike-resolved motor program is shown
in Fig. 1a. It consists of four functional blocks. The first block,
the ‘compound eye model’ recreates the visual scene that the
photoreceptors of the hawkmoth’s compound eye perceive in
the form of a sequence of frames sampled at the eye’s natural
resolution. The second block performs event-based motion
detection in the visual scene as a series of binary (or trinary)
event codes at each pixel similar to neuromorphic cameras.
The third block transforms the spatiotemporal features of the
detected motion to a lower-dimensional latent space using a
convolutional autoencoder. Then, from a sequence of these
latent sensory signals, the fourth and final block uses an RNN
to predict the corresponding precisely-timed spike patterns of
the 10 major flight muscles that represent the hawkmoth’s
flight motor control for floral target tracking.

A. Dataset

The dataset used to model and test this framework was
previously recorded from multiple independent trials on 5 M.
sexta subjects flying on a fixed tether and responding to a
sinusoidally oscillating robotic flower [7]. The flower was
oscillating laterally at 1 Hz. Since this oscillation is much



Fig. 1. (a) Our model of a hawkmoth’s visuomotor system utilizes the visual encoding of a moving floral target to sequentially predict precise timings of
spike-resolved motor output coordinated across 10 major flight muscles. (b) Spike patterns in EMG data from the 10 major flight muscles: Left (L) and
right (R) dorsolongitudinal (DLM), dorsoventral (DVM), subalar (SA), basalar (BA) and third axillary (3Ax). The time series of spike data has been split
into wingstrokes (shown as alternating shaded and unshaded rectangles) in a way to preserve contiguous spike bursts. Hence, the rectangles do not coincide
in time. But the duration of all the temporally coinciding wingstrokes is the same across all muscles. (c) Flower in the reconstructed animated scene to be
projected on the ommatidial grid on the compound eye’s surface (d) Reconstruction of flower’s image in hawkmoth’s compound eye shown in a 36×84 pixels
grid of model photoreceptors. The grayscale value at each pixel represents the luminance intensity detected by the corresponding model photoreceptor. (e)
Event-based flower motion detection is implemented where each pixel represents the motion-detection polarity (white +1, gray 0, black −1).

slower than the wingstroke (22 Hz), it staples a large variety
of turns. A hawkmoth’s tracking response to the flower motion
was measured as forces and torques through a transducer but
here we only use these values to determine the flight bouts
where the hawkmoth was responding. Each 20-second trial in
the dataset captures roughly 450 wingstrokes and consists of a
time series of 1-D flower position, precise (0.1 ms) timings of
roughly 7000 spikes from all the 10 major flight muscles, and
force and torque measurements from the force transducer. The
precise spike timings were previously extracted from spike-
resolved EMG recordings. A sample 500 ms recording is
shown in Fig. 1b. The entire dataset consists of 16 trials of
20-second each from experiments on 5 hawkmoth subjects.
This makes up a total of roughly 7000 wingstrokes and more
than 100,000 EMG spikes from the 10 major flight muscles.

B. Visual system model

1) Scene reconstruction and the compound eye model: For
each 20-second trial, we track the flower and extract its trajec-
tory by applying DLTdv8 [22] on a recorded video captured
from above the hawkmoth and the flower (top view). Then
using the measurements of the 3-D relative position of the
moth’s tether with respect to the flower rig, we reconstruct the
motion of the flower as an animation in the hawkmoth’s frame
of reference. Once this visual scene is created, we compute its
projection onto an array of photoreceptors in the hawkmoth’s
compound eye model. The compound eye is assumed as a
simple hemispherical eye with a 180◦ field of view along
both azimuthal and elevation angles. Each facet is connected
to one photoreceptor projected by an interommatidial angle of

0.96◦ [23], [24]. The visual scene of the flower on a plane
outside the eye is then projected onto the hemispherical array
of photoreceptors using Gnomonic projection [25],

x = x0 −
mre
cos θ

(cosϕx sinϕx0− (1)

sinϕx cosϕx0
) cos(ϕy0

− ϕy),

y = y0 +
mre
cos θ

cosϕx0
sin(ϕy0

− ϕy), (2)

where x and y are the coordinates of points on the image plane
that is being projected from outside the eye, x0 and y0 are the
coordinates of the center of focus of the hawkmoth’s eye on
the image plane (assumed (0, 0)), θ = | cos−1(sinϕx sinϕx0+
cosϕx cosϕx0 cos(ϕy0 − ϕy))|, ϕx and ϕy are the angular
locations of a photoreceptor along the horizontal and vertical
directions across the hemispherical photoreceptor array, ϕx0

and ϕy0
are values at the center of the array (assumed (0,0)),

re = 0.00205 m is the radius of hawkmoth’s eye [23] and m =
dmf/re+1 is the magnification ratio where dmf is the distance
between hawkmoth and flower. Because there is no moving
object in the data except the robotic flower, the hawkmoth’s
field of view is restricted between −80◦ < ϕx < 80◦ and
−35◦ < ϕy < 35◦ to discard the pixels with no information.
The resulting grid shown in Fig. 1c is 36 pixels × 84 pixels,
which makes a total of 3024 photoreceptors – a small subset
of ∼ 25000 facets on M. sexta’s compound eye [24]. The
frames are sampled at 125 FPS, which is approximately the
flicker fusion frequency of hawkmoths [26]. The luminosity
level L(px, py, n) of each pixel is converted to grayscale range
0-255, where 0 ≤ px ≤ 83 and 0 ≤ py ≤ 35 are x and y pixel
indices respectively, and n is the frame number. A sample



frame of the flower’s image projection inside the compound
eye model is shown in Fig. 1d.

2) Event-based motion detection: To detect the flower
motion, an event-based motion detection algorithm is im-
plemented [27]. This is a simplified neuromorphic sensing
technique inspired by elementary motion detection in optic
lobes of insects [28]. At each pixel, it evaluates the difference
in luminosity between consecutive frames. If the absolute
difference at a pixel (px, py) between nth and (n−1)th frame
is greater than a certain threshold, an event E(px, py, n) is
said to be detected. A polarity of either +1 or −1 is assigned
to that pixel depending on whether the luminosity difference
was positive or negative respectively. Otherwise, a value of
0 is assigned. A sample frame of the event polarity matrix
(EPM) of flower motion is shown in Fig. 1e where the flower is
moving to the left of the observer. Visual scene reconstruction,
compound eye modeling and event-based motion detection are
all performed using custom code in MATLAB.

3) EPM compression: The EPM is a high-dimensional
but sparse representation of the flower motion. So it can be
compressed to reduce its dimensionality with little or no loss
of information content. Indeed, such extraction of task-relevant
variables from large, sparse, event-based sensory blocks is one
way the brain is thought to process information for controlled
motor tasks [29]. We train a convolutional autoencoder, with
6 encoding and 6 decoding layers in series, and then extract
a 64-dimensional array of latent features from the output
of the encoding layers. The input to the autoencoder and
the autoencoded output are stacked EPMs where (−1, 0,+1)
polarities are transformed to (0, 1) polarities for simplification
of the learning task. Pixels in the matrix with +1 polarities
occupy the upper stack while those with −1 polarities occupy
the lower one. Stacked EPM is also a closer representation of
motion detection in the optic lobe of the hawkmoth because
separate cells are responsible for detecting an abrupt rise or
fall in luminosity [30]. For each frame or at each time-step,
a 6048-element event polarity matrix E(n) of flower motion
is compressed to a 64-element latent feature array gi,n, where
i ∈ {1, 2, 3, · · · , 64} is the feature dimension and n is the
frame number. The autoencoder is modeled and trained using
Keras API in Python, and the optimizer used for training is
Adam with binary cross-entropy loss function.

C. Predicting precisely-timed spike patterns

The prediction part of our model consists of a neural
network with one input layer, one hidden RNN layer and two
output layers as shown in Fig. 2a. The latent features gi,n are
normalized and downsampled to wingbeat frequency and are
then input to the neural network model as g̃i,k, where k is
the wingstroke number. Because there are 64 latent features,
the input layer has 64 neurons. The hidden layer consists of
1000 recurrent neurons. Our choice of the number of neurons
was made after trying networks of different sizes and then
observing that at least roughly 1000 neurons are necessary
to capture the spike timing variance observed in the data.
The time-step of the recurrence equals the wingstroke time

period of the hawkmoth in the data because its flight muscles
spike in periodic bursts. As shown in Fig. 1b, each motor
unit corresponds to one muscle and most of the muscles
fire in bursts nearly every wingstroke. The burst of spikes
activating a muscle occurs in a narrow phase range that varies
across muscles. Moreover, in our dataset, each muscle has
a different maximum number of spikes in a single burst as
shown in Fig. 2b. The observed maximum number of spikes
per burst summed across all muscles in our dataset is 41.
Because each spike in a burst can be viewed as occurring
at most once per wingstroke, we assign features to these 41
‘spiking units’ separately. These features include 1) binary
occurrence of the spike or spike event ej,k i.e. whether jth
spiking unit has fired (ej,k = 1) or not fired (ej,k = 0) in
the kth wingstroke, and 2) spike timing tj,k in milliseconds
relative to the start of the wingstroke. In case a spiking unit
does not fire in the kth wingstroke, its spike time is assumed to
be tj,k = tj,k−1. Spikes in a burst are assigned to each spiking
unit ordinally i.e. based on the sequence of their appearance
in the burst. Extracted spike event ej,k and spike timing tj,k
can always be recombined into spike trains because we know
both the specific muscle each spiking unit corresponds to and
the time instance when the current wingstroke started. To
predict these two features for each spiking unit sequentially
every wingstroke, there are two output layers with 41 neurons
each. One output layer makes binary predictions on spike
events ej,k, whether jth spiking unit has fired in the kth
wingstroke. The other output layer predicts normalized spike
timings t̃j,k relative to the wingstroke onset. Hence, the task
for the neural network is to accurately predict for the kth
wingstroke the spike events ej,k and normalized timings t̃j,k
for j ∈ {1, 2, 3, . . . , 41} spiking unit, given the normalized la-
tent features g̃i,k of the flower motion for i ∈ {1, 2, 3, . . . , 64}.
In our dataset, the maximum number of spiking units turned
out to be 41. However, more generally in other datasets,
the number of total spiking units could vary. Hence more
generally, the maximum number of spikes per burst for a
muscle or a motor unit can be chosen to be a large number
(maximum number of possible spikes in a wingstroke given
spike duration and refractory period) and then the total number
of spiking units can be calculated similarly by summing over
all the muscles or motor units. Among the spike patterns of
10 major flight muscles shown in Fig. 1b, RDLM and LDLM
consistently spike once every wingstroke. Hence, their mean
spike time is used as the reference time, relative to which
tj,k is predicted. In other words, the EMG data is split into
wingstrokes based on the mean spike timings of the DLM
muscles [31] but a small constant time shift (as wingstroke
fraction) is applied for each muscle to center the spike bursts
in order to keep them contiguous as shown in Fig. 1b.

1) Network training: The entire prediction part is modeled
and trained using Keras. The recurrent layer has a time step of
discrete 1 unit which means that its inputs and outputs from
(k−1)th wingstroke were used for making predictions for the
kth wingstroke. For both output layers of the neural network,
the loss function is the mean-squared error but the overall loss



Fig. 2. (a) Structure of the neural network that is trained to predict the
spike events and timings of each of the 41 spiking units across 10 muscles.
The input layer receives a sequence of normalized latent features g̃i,k from
the convolutional autoencoder. The RNN in the hidden layer processes these
values. During the kth wingstroke and for the jth spiking unit, the first output
layer predicts spike events ej,k (followed by a rounding operator), and the
second output layer predicts normalized (by wingstroke time period) spike
timings t̃j,k . Sigmoid and ReLU activation functions are applied at the first
and the second output layers respectively. (b) The mean and the maximum
number of spikes per wingstroke for each muscle observed across the entire
dataset of roughly 7000 wingstrokes

function is the sum of the two given by,

J =
we

M

∑
k

∑
j

(ej,k − êj,k)
2+

wt

M

∑
k

∑
j

(t̃j,k − ˆ̃tj,k)
2, (3)

where we = 1 and wt = 0.25 are the weights assigned to
each loss function to make their magnitudes comparable, M
is the product of the number of wingstrokes and the number
of spiking units, t̃j,k is the normalized value of tj,k, and êj,k

and ˆ̃tj,k are the predicted values of ej,k and t̃j,k respectively.
We train our model to make intra-trial (same trial, same
moth subject) as well as inter-trial (different trial, same moth
subject) predictions. Predictions are only limited to the same
subject because motor control patterns of different hawkmoth
subjects can vary despite the same sensory stimulus [7], [32].
Our dataset consists of 16 experimental trials of 20 seconds
each from 5 hawkmoth subjects, with 2 to 5 trials per subject.
The first half of each 20-second trial is the training set (80-
20% validation split) for intra-trial predictions, and the second
half of the same trial is used as the test set. For inter-trial
predictions, one randomly chosen trial from each subject is
selected as the training set while the remaining trials from the
same subject are placed in the test set. This makes the total
number of test trials for inter-trial predictions to be 11. The
total number of wingstrokes in the test set of intra-trial and
inter-trial predictions are 3506 and 4914 respectively. Only the
first half of a 20-second trial is used as the training set so that
the same trained weights can be used to make both inter-trial
and intra-trial predictions. With the Adam optimizer used for
network training for all training trials, the total loss function
converges to a value of about 0.2 within 500 epochs. Beyond
this point, the validation loss starts to increase.

III. RESULTS

To test the success of our visual perception and RNN-based
model, we analyze how accurately it can learn and predict

patterns of the hawkmoth’s motor spikes coordinated across its
10 major flight muscles. We break down the predictions into
two fundamental features of the spiking patterns: spike counts
measured in terms of spike events ej,k, and spike timings tj,k
measured in milliseconds. From the predicted values of these
features, a spike train for each muscle can be reconstructed.
A sample spike train from intra-trial and inter-trial predictions
is shown in Fig. 3a.

A. Spike event predictions

For intra-trial predictions on the test data comprising 3506
wingstrokes, the RNN correctly predicts spike events with 84-
100% accuracy of the wingstrokes across all muscles as shown
in Fig. 3b. Spike events for both DLM muscles are predicted
with 100% accuracy because these muscles consistently spike
once every wingstroke. Therefore, the RNN is able to learn
their spike events perfectly. The R3Ax muscle has the least
spike prediction accuracy at 84%. Overall 90% accuracy is
achieved across the entire motor program. In the data, the
range of the maximum percentage of one particular number
of spike counts per wingstroke across all muscles is 40-68%.
Overall at 90%, our predictor is performing considerably well
compared to if it just predicted these maximum numbers for
each muscle instead of learning. Results on spike events that
are correctly predicted, missed (false negatives) and undesired
(false positives) are also plotted and compared with the ob-
served ones in Fig. 3c. The number of undesired spikes as a
percentage of actual spikes is also less than 14%. For the first
spike in a burst, the number of missed spikes and undesired
spikes as a percentage of actual spikes is always less than 1%
and 8% respectively.

For inter-trial predictions on the test data comprising 4914
wingstrokes, the RNN correctly predicts spike events with 80-
100% accuracy of the wingstrokes across 9 muscles, while
the prediction accuracy for RDVM is relatively low at 69.6%
(Figs. 3b and 3d). The reason for the low prediction accuracy
of RDVM is one particular hawkmoth subject that showed
a large variation in the percentage of times RDVM muscle
spiking exactly twice. This percentage varies between 16%
and 95% in the test data of the subject while the percentage
in training data is about 40%. Even though spike prediction ac-
curacy for SA, BA and L3Ax muscles seems to have increased
for inter-trial predictions, there are roughly 1.5 times as
many undesired spikes compared to the intra-trial predictions.
Overall, across all muscles, an average inter-trial accuracy of
87% is achieved in spike event predictions. The muscles that
have relatively low spike event prediction accuracy show a
higher number of spikes per wingstroke burst and have more
uniformly distributed spike count numbers. This is also the
reason why R3Ax has the largest spike prediction error as it
has the highest average number of spikes per wingstroke (or
burst) and the lowest peak of the mode of the spike count
distribution.



Fig. 3. (a) Spanning roughly 7 wingstrokes in time, a sample of actual and predicted spike trains for the 10 flight muscles. Circles correspond to the actual
spike timings, squares to the intra-trial predictions and asterisks to the inter-trial predictions. Time intervals between transparent blue bars are wingstroke time
periods. (b) Summary of the intra-trial (3506 wingstrokes) and inter-trial (4914 wingstrokes) prediction errors for each muscle. Known values of precision
for each muscle [33] are also given for comparison with spike time prediction errors. (c)-(d) Bar plots of spike event prediction errors for the 10 muscles
(c) intra-trial (3506 wingstrokes) (d) inter-trial (4914 wingstrokes). Opaque bars show correctly predicted spikes. Bars with the most transparency show the
actual number of spikes. The difference between the heights of a most transparent bar and its corresponding opaque bar gives the number of missed spikes
(false negatives). Lengths of bars with lesser transparency that are stacked on top of opaque bars show the number of undesired spikes (false positives). (e)-(f)
Violin plots show the distributions of (e) intra-trial (3506 wingstrokes) and (f) inter-trial (4914 wingstrokes) spike time prediction errors across 10 muscles.
Horizontal colored bars represent median values and 75% quantiles. Black horizontal bars correspond to the median values of known spike timing precision
of each muscle [33].

B. Spike timing predictions

Accurately predicting muscle spike timings down to the
millisecond scale is important because timings contain nearly
the entire information on coordination between flight muscles
which drive and adjust wingstrokes with time periods of about
45 ms. [7]. These spike timings also contain most of the
information on how the spikes are being modulated by the
sensory stimulus. To measure the amount of modulation in
the model, we raise the magnitude of RNN’s input (latent
feature array gj,k) step-wise by scaling it from 0 to 2 and
evaluating the corresponding variation in ˆ̃tj,k. On average,
the standard deviations of ˆ̃tj,k distributions gradually increase
from 0.006±0.002 to 0.078±0.008 on scaling the RNN-input
from 0 to 0.5. Then from 0.5 to 1, they stay nearly steady.
But beyond this point, the deviations increase at a constant
rate of about 0.1 wingstroke time periods per unit increase
in the RNN-input scaling. This shows that the scaling gj,k
between 0.5 and 1 is enough to capture the actual magnitude of
spike timing modulation. However, to determine the temporal
precision of our model, we need to calculate the spike timings
prediction errors at the actual values of gj,k.

For the correctly predicted spikes, we calculate the median
spike time prediction errors and show them in Fig. 3b. The
prediction error distributions are shown in Fig. 3e. For intra-
trial predictions, the errors were less than 2.2 ms in all
cases except the R3Ax muscle where the error was 2.9 ms.
These values of spike timing precision are close to the known
precision for each muscle which varies from 0.7 to 1.6 ms
(Fig. 3e – black horizontal bars) for comparison [33]. The
known precision values are based on the estimates of the
error tolerance of the continuous mutual information between
spike timings of each muscle and yaw torque generated by the
hawkmoth to respond to the stimulus [33]. The median errors
for nine muscles are within 0.8 ms of the known median spike
timing precision, while the R3Ax muscle is an outlier with
a median prediction error of 1.7 ms more than the known
precision. The mode of the error distribution of R3Ax is
approximately 1.5 ms though, which is within 0.3 ms of the
measured precision of R3Ax.

For inter-trial predictions, the median errors ranged between
1.8 and 3.8 ms across all muscles (Fig. 3b). These values
of spike timing precision are within 2.6 ms of the known



precision values for each muscle (Fig. 3f – black horizontal
bars) [33]. Inter-trial predictions are less accurate than intra-
trial predictions because the animal’s sensorimotor state can
change over time between trials [7], [32]. Overall, our spike
timing prediction error distribution considerably overlaps with
the known precision of the hawkmoth’s flight muscles [33].
Moreover, our timing predictions are also able to capture the
distributions of timing differences in each contralateral pair
of muscles, some of which have been shown to contribute to
torque production during visuomotor yawing responses [6],
[31] and also to compensate for wing damage [20].

IV. DISCUSSION

Our model captures spike count and timing codes observed
in our hawkmoth flower tracking dataset. Intra-trial spike
timing prediction errors are roughly 1-2 ms, while inter-trial
errors are about a millisecond larger. Yet these errors closely
coincide with the known precision values of each of the major
flight muscles [33]. Same-trial predictions involve learning the
motor state of the animal and making predictions within a
10-second window. However, between trials, errors might in-
crease because predictions are made about the animal’s motor
response with a gap of minutes or even a few hours. Over
longer periods, the animal’s motor state may transition due
to physiological changes, such as muscle fatigue. Therefore,
for an interrupted execution of the behavior, adjustments to
either the firing rates or the overall motor coordination across
muscles might be required [34], [35].

some existing frameworks for generating precisely-timed
spikes use SNNs whose outputs more closely represent neural
signals. However, their capabilities are limited to feedforward
or two-layered networks trained on simulated input data [13],
[14]. We do not yet use a fully spiking network even though
our output layers predict spike events as well as spike timings.
This is sufficient to extend ANN predictability to the compre-
hensive motor program of moths but a fully spiking framework
would better reflect the neural processing used throughout the
animal’s sensorimotor circuits. This is an important future
direction for our work. Advancing such models can deepen
our understanding of how movement is maintained from cycle
to cycle by modulations in rates and timings of these spikes
based on sensory feedback from external as well as self-motion
cues.

Compared to intra-trial predictions, our inter-trial spike
timing prediction errors for different muscles increase by
different amounts (larger increase in DVM and BA muscles)
but the increase for each muscle within a contralateral pair
is roughly the same. This means that in case a change in
motor control strategy elicits slight changes in spike timings,
for effective coordination the timing changes must be shared
across multiple muscle pairs. Moreover, in each trial, each
contralateral muscle pair has a distinct spiking pattern and
timing precision value which slightly varies even within a
pair. This is because each contralateral pair has a distinct
functional role, each muscle is enervated by a different neuron
[36] and the experimental preparation might now be perfectly

symmetric. The DLMs and the DVMs are predominantly
wingstroke power muscles while the SAs, the BAs and the
3Axs are primarily used for steering [37], [38]. Within a
wingstroke, the DLMs and the DVMs power the downstroke
and the upstroke respectively so they all must spike every
wingstroke to continuously drive the flapping of the wings.
For this, they must encode sub-millisecond scale information
individually and not just relative to one another [33]. This
might be the reason why our intra-trial spike timing prediction
errors for the power muscles are smaller than the three steering
muscles. On the other hand, our intra-trial prediction errors
for the 3Ax muscles are the largest. On average, their spike
counts per wingstroke are also the highest. But they carry
the same amount of information in their spike timings as
the DVMs, the SAs and the BAs [7]. Having more spikes
to carry the same amount of information reduces the timing
precision requirement for the 3Ax muscles and thus they
can still carry the essential information despite larger errors.
Moreover, prediction errors later in the burst do not matter
because physiologically a single spike error might be less
likely to make a difference in a long burst as the calcium
activation begins to saturate, although there can be exceptions
based on biomechanical context [3], [39], [40].

Placed in the context of the dataset used, our model learns
the motor program underlying a visuomotor response of the
hawkmoth subject to a slowly moving floral target along a
single axis – an apparently simple task involving yaw steering
only. However, flight steering control is not a simple task for
the nervous system because of the unstable dynamics of flight
[41]. Control is executed using all muscles, not just a single or
relatively few motor channels [7]. Information is processed in
precise spike timing that does not simply linearly translate into
forces and torques [7], [21]. Moreover, there is evidence that
a hawkmoth’s muscle coordination patterns are conserved at
the level of motor neuronal timings to the point that they can
predict functionally distinct behaviors across different visual
stimulus conditions [32]. Despite this, in the next steps, we
plan to progressively shift towards recording the hawkmoth’s
visuomotor response to complex motion patterns of targets in
scenes with multiple moving objects where some objects may
have more causal influences on the motor output than others.

Once combined with existing decoders [21] that translate
coordinated motor spikes into forces, our model paves the
path to deepen our understanding of neuromechanics in terms
of causal effects of comprehensive and ubiquitous precise
timing codes on motor control and locomotion. Incorporating
temporally precise spiking mechanisms into neural network
models provides an opportunity to understand control and
coordination in neuronal networks. Moreover, a spike-based
control framework that captures temporal precision and co-
ordination may also reveal how such architectures expand the
control capabilities of agile animals beyond simple tasks. They
might help us discover how mathematically simple biomechan-
ical control laws emerge from underlying complex spiking
patterns as well as drive the next generation of neuromorphic
controllers to navigate in dynamic and uncertain environments.



V. CONCLUSION

We show that a simple RNN interfaced with an elemen-
tary model of an animal’s vision is sufficient to predict
a comprehensive, coordinated and temporally precise spike-
resolved motor response that was experimentally measured.
It is comprehensive in terms of the encoded information for
yaw steering motor control in a hawkmoth and is coordinated
across 10 major flight muscles using millisecond-precise motor
spikes modulated by sensory processing in a visual system.
In addition, our predictions match the natural spike timing
precision observed for each muscle [33].
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“Learning Precisely Timed Spikes,” Neuron, vol. 82, no. 4, pp. 925–938,
2014.

[17] D. Sussillo, “Neural circuits as computational dynamical systems,” Curr.
Opin. Neurobiol., vol. 25, pp. 156–163, 2014.

[18] S. Sponberg, J. P. Dyhr, R. W. Hall, and T. L. Daniel, “Luminance-
dependent visual processing enables moth flight in low light,” Science
(80-. )., vol. 348, no. 6240, pp. 1245–1248, 2015.

[19] J. D. Sprayberry and T. L. Daniel, “Flower tracking in hawkmoths:
Behavior and energetics,” J. Exp. Biol., vol. 210, no. 1, pp. 37–45, 2007.

[20] M. J. Fernandez, D. Springthorpe, and T. L. Hedrick, “Neuromuscular
and biomechanical compensation for wing asymmetry in insect hovering
flight,” J. Exp. Biol., vol. 215, no. 20, pp. 3631–3638, 2012.

[21] H. Yang, J. Putney, U. B. Sikandar, P. Zhu, S. Sponberg, and S. Ferrari,
“A relative spike-timing approach to kernel-based decoding demon-
strated for insect flight experiments,” in 2022 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1–7, 2022.

[22] T. L. Hedrick, “Software techniques for two- and three-dimensional
kinematic measurements of biological and biomimetic systems,” Bioin-
spir Biomim, vol. 3, no. 3, 2008.

[23] J. C. Theobald, E. J. Warrant, and D. C. O’Carroll, “Wide-field motion
tuning in nocturnal hawkmoths,” Proc. R. Soc. B Biol. Sci., vol. 277,
no. 1683, pp. 853–860, 2009.
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