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1 Abstract

Subject-to-subject variability is a common challenge both generalizing models of neural
data across subjects, discriminating subject-specific and inter-subject features in large
neural datasets, and engineering neural interfaces with subject-specific tuning. We
study the problem of the cross-subject mapping of neural activity. The objective is to
obtain a task-specific representation of the source subject signal into the feature space
of the destination subject. We propose to use the Restricted Boltzmann Machine
(RBM) with Gaussian inputs and Bernoulli hidden units; once trained over the entire
set of subjects, the RBM allows the mapping of source features on destination feature
spaces using Gibbs sampling. We also consider a novel computationally efficient
training technique for RBMs based on the minimization of the Fisher divergence, which
allows the gradients of the RBM to be computed in closed form. We use neural
decoding as a downstream application to test the method. Specifically, we test decoding
on neuromuscular recordings of spike trains from the ten muscles that primarily control
wing motion in an agile flying hawk moth, Manduca sexta. The dataset consists of this
comprehensive motor program recorded from nine subjects, each driven by six discrete
visual stimuli. The evaluations show that the source features can be decoded using the
destination classifier with an accuracy of up to 95% when mapped using an RBM
trained by Fisher divergence, showcasing the promising potential of the RBMs for
cross-subject mapping applications.

2 Author summary

In this study, we address the variability of neural data across subjects, which is a
significant obstacle in developing models that can generalize across subjects. Our
objective is to create a task-specific representation of the source subject signal in the
feature space of the destination subject. To this end, we consider the applications of the
Restricted Boltzmann Machine (RBM) with Gaussian inputs and Bernoulli hidden
units, trained on the joint feature space of the source subject and destination subject.
The trained RBM can then be used to map source features onto the destination feature
spaces using Gibbs sampling. We also present a novel, score-based computationally
efficient training technique for RBMs based on Fisher divergence. Using neural
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decoding as a downstream application, we demonstrate the effectiveness of our method
on neuromuscular recordings of spike trains from the ten muscles controlling wing
motion in an agile flying hawk moth, Manduca sexta, recorded from nine subjects.
Numerical evaluations show that the source features can be accurately decoded using
the destination classifier with up to 95% accuracy when mapped using an RBM trained
by Fisher divergence.

3 Introduction 1

Learning algorithms in neuroscience are required to generalize well across unseen 2

subjects of a population. Yet, implementing reliable cross-subject algorithms in 3

neuroscience is a notoriously challenging problem. An important factor contributing to 4

its difficulty arises from the non-stationary nature of the neural activity signals, whose 5

statistical properties vary dramatically even under slight changes in the recording 6

conditions [1, 2]. As a result, the algorithms trained and optimized on data collected 7

from a given subject, fail to perform reliably when directly applied to other subjects. 8

For instance, a neural decoder trained on one subject will perform close to a random 9

choice classifier if applied directly to a different subject, thus failing to identify the 10

correct neurological state or stimulus condition even when the subjects perform the 11

same tasks simultaneously [3]. 12

Problems of this type, i.e., problems where the training and test data originate from 13

different distributions, are common in machine learning and are typically tackled within 14

the sub-field of transfer learning. In the context of the cross-subject problem, various 15

approaches have already been considered [2]. In our previous work on this problem, we 16

focused on domain adaptation methods that map the source data onto the destination 17

feature spaces [3]. Generative modeling is another promising approach to cross-subject 18

mapping. More recently, we have also considered using directed graphs, such as 19

conditional variational autoencoder (cVAE), to generate the source data onto the feature 20

space of the destination data [4], where the learning model for the downstream task is 21

trained. This approach, however, requires a separate directed graphical model to be 22

trained each time a new downstream task and/or new destination subject is considered. 23

In this paper, we propose to use undirected graphs to generate samples for 24

cross-subject mapping. Specifically, we suggest training a Restricted Boltzmann 25

Machine (RBM) [5,6] for this purpose, as described in Section 4. RBM is a popular 26

generative model that has had notable success in representation learning with 27

applications in a wide variety of tasks in neuroscience [7–11]. We note that the 28

applications of RBMs in transfer learning have been studied before [12–14] in computer 29

vision applications. 30

The main objective of cross-subject learning is to obtain a task-specific 31

representation of the neural activity of one or more source subjects in the destination 32

spaces of one or multiple destination subjects. Once the RBM is trained using a given 33

set of subjects, it can be used to map signals from any source subject within the same 34

set of subjects onto any destination feature space. We also consider an alternative 35

training method for RBMs based on Fisher divergence minimization [15]. In contrast 36

with the conventional contrastive divergence training (which is equivalent to maximum 37

likelihood, we refer more details to [5]), the Fisher divergence minimization allows the 38

gradient of the RBM to be computed in closed form, fostering efficient implementation 39

that does not require iterative Gibbs sampling during training. 40

In Section 5, we evaluate the performance of our method for cross-subject decoding 41

of discrete visual stimulus conditions using the spiking activity of the motor program, 42

specifically the set of spiking motor units, in nine hawk moths [16]. Each moth is 43

exposed to the same set of six visual stimuli and the neuromuscular activity is collected 44
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in the form of spike trains extracted from fine wire electromyography (EMGs) of the ten 45

primary flight muscles that control the wings, resulting in a comprehensive, 46

spike-resolved motor program [17]. Unlike vertebrate EMGs, these flight muscles act as 47

effectively single motor units and result in identifiable spike trains comparable to 48

population recordings of individual units elsewhere in the brain or peripheral nervous 49

system. Our results demonstrate the promising potential of the proposed framework, 50

with respectively up to 90% and 95% accuracy in decoding the behavioral state (i.e., the 51

visual stimulus), when using the RBM trained with classical and the new Fisher 52

divergence-based methods. 53

4 Cross-subject Mapping with Restricted Boltzmann 54

Machines 55

We divide this section into three parts. In Section 4.1 we present the statistical 56

formulation of the problem of cross-subject mapping as a problem of learning joint 57

distribution between source and destination feature vectors. Next, in Section 4.2, we 58

discuss RBMs and present both the contrastive divergence and Fisher divergence 59

training methods. Section 4.3 presents a simple cross-subject mapping approach that 60

uses Gibbs sampling to draw samples from the joint distribution of the source and 61

destination features. 62

4.1 Problem Statement 63

The objective of cross-subject learning is to map source subject features to the feature 64

space of one or more destinations subjects so that the motor intentions of source 65

subject can be decoded by the neural decoder that learned on one or more destination 66

subjects. In other words, we aim to obtain the appropriate destination space 67

representation of the tasks that the source subjects perform. Technically, the problem 68

boils down to finding a function that maps the feature vectors of the source subjects 69

onto the feature space of one or more destination subjects. In principle, the mapping 70

function can be assumed to be purely deterministic. However, in this paper, we adopt a 71

probabilistic approach, which generates task-specific representations of source subjects 72

into the feature spaces of one or more destination subjects. We outline details below. 73

Let MS and MD denote the index sets of the source and destination subjects, 74

respectively. Further, we let M denote the joint set of all subjects, namely 75

M = MS ∪MS. For simplicity, we assume that the subsets MS and MD are disjoint, 76

namely MS ∩MS = ∅. Let xm ∈ RDm denote the Dm-dimensional vector representing 77

the neural activity of subject m ∈ M; we refer to xm as the feature vector of subject m. 78

Furthermore, we use xS = (xi)i∈MS
and xD = (xj)j∈MD

to respectively denote the 79

joint feature vectors of the source and destination subjects. Note that xS and xD are 80

vectors with dimensions DS =
∑

i∈MS
Di and DD =

∑
i∈MD

Di, respectively. Finally, 81

we use x to denote the joint vector of features of all subjects in the set M; that is 82

x = (xS,xD) = (xm)m∈M, and its dimension D =
∑

m∈M Dm. 83

To learn the cross-subject mapping, we consider a conditional probability distribution 84

to generate feature representations in the feature space of destination subjects given the 85

feature vector of source subjects. One option is to directly parameterize the probability 86

density function p(xD|xS) of this conditional distribution. Another approach is to first 87

learn the distribution p(xS) and the joint distribution p(xD,xS) of all feature vectors 88

across the entire population of subjects in M, and then to obtain the conditional 89

distribution p(xD|xS) by Bayes’ theorem. 90

For the purpose of cross-subject mapping, it is not mandatory to learn an explicit 91

probability density function (pdf) of the conditional distribution. Recall that the 92
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Fig 1. A generative framework for the cross-subject mapping. We iterate k times back
and forth through the sampling procedure.

objective is to obtain the feature representations of the source subject in the feature 93

space of destination subject. In this paper, we propose a sampling scheme to obtain this 94

feature representation. Specifically, we consider a generative model p(x) of the 95

concatenated feature vector x = (xS,xD), and we use Gibbs sampling to sample from 96

p(x) with hidden variables h. The Gibbs sampler proceeds as follows: we initialize the 97

visible variables by x(0) = (x
(0)
S ,x

(0)
D ). Here, x

(0)
S = xS is given, and x

(0)
D is a dummy 98

and noise-like vector. Next, we sample hidden variables ĥ from p(h|x; θ), and then 99

sample visible variables x(1) from p(x|h; θ). After sufficient sampling iterations, we 100

expect to obtain x(k) = (x
(k)
S ,x

(k)
D ) where the x

(k)
D is our target, the feature 101

representation of xS in the feature space of destination subjects. The hidden layer h is 102

designed to bridge source and destination feature vectors. We illustrate this generative 103

framework in Fig. 1. 104

To this end, we aim to learn a generative framework such that we can easily sample 105

from the conditional distributions p(x|h; θ) and p(h|x; θ). In the previous work [4], we 106

considered cVAE [18], the directed graphs, to map the source feature onto the feature 107

space of the destination subjects by the decoder of the autoencoder. However, directed 108

graphs are not flexible to adopt new destination subjects, and the architecture of cVAE 109

is built on deep neural networks which is not easy to fine tuned given limited size of 110

data. In this paper, we consider the class of undirected graphical models and easily 111

adapt to the generative framework. Given its relatively simple architecture and 112

straightforward sampling scheme, RBM is the first generative model we will tackle. The 113

details are elaborated on below. 114

4.2 Learning Restricted Boltzmann Machines 115

We will first discuss the Gauss-Bernoulli RBMs and outline the principles of their 116

training. We then review the standard training technique that aims to minimize the 117

contrastive divergence, which is equivalent to minimizing the Kullback-Leibler (KL) 118

divergence between the data-generating distribution and the model. We also consider an 119

alternative training technique that minimizes the Fisher divergence. Unlike the classical 120

method, minimizing the Fisher divergence approach allows the gradients of the loss 121

function to be computed in closed form. This improves the computational efficiency and 122

reliability of the training. 123

4.2.1 Notation 124

We adopt the following notation conventions. Recall that in the context of the 125

cross-subject mapping problem outlined in Section 4.1, the vector x comprises the 126

feature vectors of the entire population of subjects, i.e., x = (x1, . . . ,xM ). Let ∇x and 127
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∆x denote the gradient and Laplacian operator with respective to (w.r.t.) the vector x. 128

Let dg(x) denote a diagonal matrix whose main diagonal is x. For a square matrix A, 129

let dg(A) denote a diagonal matrix formed by setting all the elements to A not on the 130

main diagonal to zeroes. We use ∥x∥ (respectively ∥A∥ ) to denote the L2-norm of the 131

x (respectively the Frobenius norm of A). We further use p∗(x) to denote the true 132

data-generating distribution of x. In practice, p∗(x) is usually unknown; therefore, 133

given a set of observations, a standard problem is to estimate the model density p(x) 134

from some model class that best explains the data under an appropriate evaluation 135

metric. In this paper, we focus on a parametric density model class p(x;θ),θ ∈ Θ, 136

which is parameterized as an RBM (see Section 4.2.4). 137

4.2.2 Kullback-Leibler Divergence and the Logarithmic Loss 138

A common practice to measure the deviation of a postulated probability distribution
p(x) from the data-generating distribution p∗(x) is to use the KL divergence defined by

DKL(p∗, p) = −E∗ [log p(x;θ)] + E∗ [log p∗(x)] , (1)

where the expectation is taken w.r.t. p∗(x) (as denoted by the subscript). 139

DKL(p∗, p) ≥ 0 with equality if and only if p = p∗ almost surely. The minimization of 140

DKL(p∗, p) is equivalent to the minimization E∗ [ℓ(x;θ)] where ℓ(x;θ) = − log p(x;θ) is 141

called the logarithmic loss. Let θ∗ denote the data-generating parameter that minimizes 142

the KL divergence in Eq.(1), namely p(x;θ∗) is closest to p∗(x) among all distributions 143

over Θ under the KL divergence. It can be shown from the law of large numbers and 144

standard regularity conditions [19] that the maximum likelihood estimate (MLE) 145

θ̂ML = argminθ ℓ̄(x;θ) satisfies θ̂ML → θ∗ in probability as the number of data points 146

grows. In other words, the MLE is consistent. 147

4.2.3 Fisher Divergence and Hyvärinen Score 148

The Fisher divergence of p(x,θ) from the data-generating pdf p∗(x) is defined by

Df(p∗, p) =
1

2
E∗
[
∥∇x log p(x;θ)−∇x log p∗(x)∥2

]
, (2)

where the expectation is again taken w.r.t. the data-generating pdf p∗(x). We note that
Df(p∗, p) ≥ 0 with equality if and only if p∗ = p almost surely. Under mild regularity
conditions, the Fisher divergence Eq.(2) can be written as [15]

Df(p∗, p) = E∗ [sf(x,θ)] + c∗, (3)

where c∗ is a term that does not depend on θ and sf(x,θ) is the Hyvärinen Score,
defined as

sf(x,θ) =
1

2
∥∇x log p(x;θ)∥2 +∆x log p(x;θ). (4)

The result Eq.(3) enables to minimize the Fisher divergence over the space of 149

parameters Θ by minimizing the empirical analog of the Hyvärinen Score s̄f(xn,θ). Let 150

θ∗ denote the parameter value that minimizes the Fisher divergence between p(x;θ∗) to 151

p∗(x) between all model class candidates. By standard asymptotic analysis, it can be 152

shown that the estimate θ̂f = argminθ s̄f(xn,θ) satisfies θ̂f → θ∗ in probability as the 153

number of data points grows (we refer details to [15] and references therein). This 154

estimation procedure is known as score matching. It has been proved that score 155

matching using the Langevin Monte Carlo method is equivalent to contrastive 156

divergence in the limit of infinismial step size [20]. Although this result implies that this 157
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Fig 2. A bipartite undirected graphical model: Gauss-Bernoulli restricted Boltzmann
machine with continuous input and binary hidden units.

variant of convergence divergence can retain the consistency on score matching, we note 158

that this equivalence holds only for a particular MCMC method. The actual 159

performance of these two methods are different. 160

4.2.4 Gauss-Bernoulli Restricted Boltzmann Machines 161

An RBM is a bipartite undirected graphical model where only the links between visible
units and hidden units are allowed. We focus on Gauss-Bernoulli RBM, which consists
of continuous inputs x ∈ RD and binary hidden units h ∈ {0, 1}M with the pdf

p(x,h;θ) =
e−E(x,h;θ)

Z(θ)
, Z(θ) =

∑
h

∫
x

e−E(x,h;θ)dx, (5)

where the energy function E(x,h;θ) is given by

E(x,h;θ) =
1

2
(x− c)⊤Λ(x− c)− h⊤WΛx− b⊤h. (6)

Here, W ∈ RH×D is the matrix of weights connecting the units from the hidden and
input layer, b ∈ RH and c ∈ RD are the vectors of hidden and input layer biases, and
Λ = dg(λ) denotes the diagonal precision matrix of the inputs. All these parameters are
freely learnable and they are denoted by θ in Eq.(5) and Eq.(6). We illustrate a
Gauss-Bernoulli RBM model in Fig. 2. It is easy to see that the conditional densities
are given by

p(h|x;θ) = σ (WΛx+ b) , (7)

p(x|h;θ) = N
(
WTh+ c,Λ−1

)
. (8)

The marginal density p(x;θ) of the visible inputs can be also written in the
energy-based form

p(x;θ) =
e−F(x;θ)

Z(θ)
, (9)

where Z(θ) is called the normalizing constant, and F(x;θ) is the free energy:

Z(θ) =

∫
x

e−F(x;θ)dx, F(x;θ) =
1

2
(x− c)⊤Λ(x− c)− 1⊤

Hγ, (10)
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with γ = log(1H + exp (WΛx+ b)) denoting the element-wise Softplus function. 162

Unlike Eq.(6), the energy function Eq.(10) associated with the marginal p(x;θ) is no 163

longer linear in the free parameters θ. 164

A frequently encountered Gauss-Bernoulli RBM in the literature is the one 165

associated with the conditional density p(x|h;θ) = N
(
WTh+ c, ID

)
and assumes unit 166

variances for the input units. This is a special case of our model Eq.(6) in which we 167

treat the variances of the inputs as learnable parameters, and all results and discussions 168

in this paper can be applied in a straightforward manner to the special case by 169

replacing Λ with the identity matrix. 170

4.2.5 Learning RBM via Contrastive Divergence 171

The negative log-likelihood of the parameters of the RBM, i.e., the logarithmic loss can 172

be written as 173

ℓ(x;θ) ≡ − log p(x;θ) = F(x;θ) + logZ(θ). (11)

The gradient obtains a particularly interesting form:

−∇θ log p(x;θ) = ∇θF(x;θ) +∇θ logZ(θ) = ∇θF(x;θ)− E [∇θF(x;θ)] , (12)

where the expectation in the second term is taken w.r.t. the marginal density of the 174

visible units given in Eq.(9). Therefore, it is difficult to determine the gradient 175

analytically. In order to make the computation tractable, this expectation is estimated 176

using samples from p(x;θ) which can be obtained by running a Markov chain with 177

Gibbs sampling as the intermediate sampling operator. To speed up the sampling 178

process, Hinton [5] showed that it is not necessary to wait for the Markov chain to 179

converge; instead, if the chain is initialized using training examples, reasonable learning 180

performance might be obtained only after k Gibbs steps. In practice, k = 1 is commonly 181

used. However, this corresponds to the approximate minimization of the contrastive 182

divergence (CD), which produces biased estimates of the model parameters [6]. 183

We see that an important implication of approximating MLE-based learning through 184

contrastive divergence minimization is the lack of consistency guarantees. Specifically, 185

minimizing the contrastive divergence is not guaranteed to converge to the 186

data-generating parameter θ∗ that minimizes the KL divergence from p(x;θ) to the 187

data-generating pdf p∗(x). The impediment can be traced back to the computation of 188

the gradient of the logarithmic loss and the analytical intractability of the second term 189

in Eq.(12) which appears due to the intractability of the partition function as a 190

normalizing constant in Eq.(5). 191

4.2.6 Learning RBM via Fisher Divergence 192

To overcome the issues associated with the lack of consistency guarantees, instead of 193

aiming to minimize the KL divergence through contrastive divergence approximation, 194

we propose to minimize the Fisher divergence from the marginal density of the visible 195

units p(x;θ) to the data-generating distribution p∗(x). To evaluate the Hyvärinen Score 196

Eq.(4) based on Eq.(9), we derived the following result. 197

Proposition 1 The Hyvärinen Score for the Gauss-Bernoulli RBM Eq.(5) with energy
function Eq.(6) is given by

sf(x,θ) =
1

2
∥Λ(W⊤σ + c− x)∥2 + tr(−Λ+ΛW⊤ dg(σ′)WΛ), (13)

with σ = σ(WΛx+ b) and σ′ = σ′(WΛx+ b), where σ and σ′ respectively denote the 198

element-wise Sigmoid operator and the corresponding first derivative. 199
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Proof 1 Taking the derivative of the log-density log p(x;θ) w.r.t. x, we obtain

∇x log p(x;θ) = −∇xF(x;θ)−∇x logZ(θ)

= Λ(c− x) +
H∑

h=1

∇xγ(Wh:Λx+ bh)

= Λ(c− x) +
H∑

h=1

σ(Wh:Λx+ bh)ΛW⊤
h:

= Λ(c− x) +ΛWTσ(WΛx+ b),

which gives the first term in Eq.(13). To obtain the second term, we first compute the
Hessian matrix of the log-density log p(x;θ); we obtain:

∇2
xx log p(x;θ) = ∇x(∇x log p(x;θ))

= ∇x(Λ(c− x) +ΛWTσ(WΛx+ b))

= −Λ+∇xσ(WΛx+ b)WΛ

= −Λ+ΛWT∇uσ(u)WΛ

= −Λ+ΛWT dg(σ′(u))WΛ,

where u = Wx+ b. Plugging the Hessian into the Laplacian 200

∆x log p(x;θ) = tr(∇2
xx log p(x;θ)) gives the second term in Eq.(13), which completes 201

the proof. 202

We observe that unlike the logarithmic loss in Eq.(11), the Hyvärinen Score can be
evaluated explicitly in terms of the parameters c, b and W of the Gauss-Bernoulli
RBM. Moreover, the calculation does not involve the partition function Z(θ). This
simplifies the computation of the gradient w.r.t. the parameters of the RBM, which now
can be computed by straightforward application of matrix calculus yielding the
following closed-form expressions:

∇csf(x,θ) = Λ2(WTσ + c− x),

∇bsf(x,θ) = dg(σ′)WΛ2(WTσ + c− x) + dg(WΛ2WT )σ′′,

∇Wsf(x,θ) = dg(σ′)WΛ2(WTσ + c− x)xTΛ+ σ(WTσ + c− x)⊤Λ2

+ dg(WΛ2W⊤)σ′′xTΛ+ 2dg(σ′)WΛ2,

∇λsf(x,θ) = dg(x)W⊤ dg(σ′)WΛ2(W⊤σ + c− x)

+ dg(W⊤σ + c− x)Λ(W⊤σ + c− x)

+ 2 dg(WT dg(σ′)W)λ+ 1N

+ dg(x)W⊤ dg(WΛ2W⊤)σ′′

with σ = σ(WΛx+ b), σ′ = σ′(WΛx+ b) (as in Proposition 1), whereas 203

σ′′ = σ
′′
(WΛx+ b); also, recall that Λ = dg(λ).1 204

It is evident that, as opposed to the gradient of the logarithmic loss Eq.(12), the
gradient of the Hyvärinen Score can be computed explicitly w.r.t. the parameters of the
Gauss-Bernoulli RBM, producing closed-form expressions that can be used directly used

for training the parameters of the RBM. Indeed, let θ̂
(n)

f denote the parameter estimate

1We omit the detailed derivation of the gradients for brevity, and we note that the gradients can be
derived through straightforward application of matrix calculus.
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at each step n. The new parameter estimate can be obtained through the following
update rule (repeated until convergence):

θ̂
(n+1)

f = θ̂
(n)

f − η
1

B

∑
b

∇θsf

(
xb, θ̂

(n)

f

)
,

where η is the learning rate, B is the size of the minibatch of randomly chosen data 205

points xb, and b = 1, . . . , B at step n. 206

4.3 Cross-subject Mapping Algorithm 207

Recall from Section 4.1 that in cross-subject mapping, the goal is to obtain destination 208

feature representation(s) xD from the source feature vector(s) xS. We will elaborate on 209

how to use an RBM and the Gibbs sampler to sample such representations. We first 210

parameterize the generative model p(x,h;θ) of all feature vectors x = (xS,xD) and 211

hidden variables h using the Gauss-Bernoulli RBM described in Section 4.2.4, see also 212

Fig. 2. After learning the parameters of the Gauss-Bernoulli model we infer 213

xD = (xi)i∈MD
from xS = (xj)j∈MS

as follows. First, we initialize the vector x̂ by the 214

features of the source subjects xm, m ∈ MS and random noise (e.g., with standard 215

normal variables). Then: 216

1. generate ĥ ∼ p(h|x̂;θ) via Eq.(7); 217

2. using ĥ generate x̂ ∼ p(x|ĥ;θ) via Eq.(8). 218

We obtain the final estimate after repeating the above two steps k ≥ 1 times; Fig. 1 219

illustrates an example with k = 3. This gives the destination feature space 220

representations of the source feature vectors and they can be further processed using 221

algorithms trained on destination data. Alternatively, in the final step, we can skip 222

sampling from p(x|ĥ;θ) and we can also infer xD as x̂D = (x̂j)j∈MD
= maxxD

p(x|h;θ). 223

For simplicity and without loss of generality, we have assumed that source and 224

destination subjects MS and MD satisfy M = MS ∪MD and MS ∩MD = ∅. This 225

allows us to skip a tedious step in the algorithm and avoid the marginalization of the 226

joint density p(x,h;θ) over subjects that are neither sources nor destinations. 227

5 Evaluation 228

Next, we present the results from the evaluations. First, in Section 5.1 we describe the 229

experimental protocol and the acquired data. In Section 5.2 we discuss the evaluation 230

methodology, including evaluation scenarios. In Section 5.3 we present the main 231

findings and observations. 232

5.1 Experiment, Data and Features 233

5.1.1 Protocol 234

We study a comprehensive flight motor program for hawk moths. We will describe the 235

experimental protocol and related procedures only briefly here; the interested reader is 236

referred to [16] where the data set was first published for more details. The subjects, 237

i.e., the moths are tethered inside a three-sided box formed by computer monitors 238

displaying the visual stimuli. Each stimulus is represented by sinusoidal gratings with a 239

spatial frequency of 20◦ per cycle on 3D spheres projected on the monitors. The spheres 240

drift at a constant velocity of 100◦ per second, corresponding to a temporal frequency of 241

5 cycles/second. Moreover, the spheres also drift in opposite directions about the three 242
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axes of rotation which result in 6 different visual stimuli also known as pitch (up, down), 243

roll (left, right), and yaw (left, right) [16]. 244

The moth responds to each of the 6 discrete stimuli by producing turning effort as 245

assessed with a 6 degree-of-freedom force/torque transducer. The 10 primary muscles 246

that control the flying motion of the moth are wired and enable spike-resolved EMG 247

signals to be recorded during tethered flight. These key muscles include the flight power 248

muscles (dorsolongitudinal (DLM) and dorsoventral (DVM) muscles), as well as the 249

steering muscles, (third axillary (3AX), basalar (BA), and subalar (SA) muscles) on 250

both the left and the right side of the thorax. The EMG recordings are used to extract 251

the timings of the motor unit spikes in each of the muscles that serve as control 252

commands by means of which the nervous system guides the motion of the moth in 253

response to the different visual stimuli; more details can be found in [16,17]. Taken 254

together, this dataset is unusual in its near-complete recording of all the spikes the 255

animal can use to control its wings and so is an ideal point of convergence to test for the 256

decodability of stimulus conditions. 257

The objective is to decode the visual stimulus from the comprehensive motor 258

program recordings, i.e., the spike trains. The subject-specific formulation of the 259

problem where the neural decoder (classifier) is both trained and tested on the same 260

subject was analyzed in [16]. Here, we study the performance of the neural decoder in 261

cross-subject settings, where the test data originates from the source subjects whereas 262

the classifier is trained on destination subject data. 263

The dataset is collected from 9 subjects over 20 seconds of recording sessions for 264

each visual stimulus. Each session is segmented into wing strokes, i.e., trials [16]. The 265

typical duration of a wing stroke is between 50 and 70 milliseconds yielding an average 266

number of trials of ≈ 2500 per moth. It should be noted that some moths in the dataset 267

are missing the recordings from some of their muscles (either one or at most two) due to 268

failures in the recording procedure. Nevertheless, as demonstrated in [16], the absence of 269

some (one or two) muscles does not have a significant aspect on decoding performance; 270

in fact, as shown in [16], high decoding accuracy (higher than 90%) can be achieved 271

even with half of the available muscles due to the completeness of the motor program. 272

5.1.2 Feature Extraction 273

Before we delve into more details with respect to the cross-subject neural decoder, we
briefly describe our methodology for constructing feature representations from spike
trains proposed in [16]. Since the spike trains are given by variable-length vectors of
spike timings, we consider Gaussian kernels, a strategy commonly used in neuroscience,
to interpolate the spike trains. The Gaussian kernel is given by:

x(t) =
∑
n

exp

(
− (t− tn)

2

2σ2

)
, 0 ≤ t ≤ τ,

where tn denotes the timing of the n-th spike collected from an arbitrary muscle, trial, 274

and moth, τ denotes the wing stroke cut-off threshold (we only consider spikes that 275

satisfy tn ≤ τ), and σ is the Gaussian kernel bandwidth. The goal is to obtain a smooth 276

multivariate time-series representation of the spike trains in which the spike timing 277

information is conveyed by centering one kernel at each spike and summing the kernels; 278

these yields feature vectors of fixed dimension τ · νS where νS is the sampling frequency. 279

For consistency, the muscles whose recordings are missing are filled with zero vectors of 280

the same length as above. We then flatten the interpolated time series across muscles to 281

obtain one large feature vector. Finally, we apply PCA and retain only the first P 282

largest modes; this is our final representation xm of the neural activity of subject m 283

with dimension Dm = P . 284
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Fig 3. The feature space across the first two principal mode for each moth. For visual
clarity, the diagrams also show the confidence ellipse corresponding to one standard
deviation for each of the visual conditions.
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Fig. 3 depicts the feature spaces of each moth and all six visual conditions (tasks) 285

across the first two strongest principal components, i.e., modes after performing PCA. 286

The diagrams also show the confidence ellipses corresponding to one standard deviation 287

for each of the conditions. It can be clearly observed that the data demonstrates strong 288

separability properties even in the first two dimensions of the PCA-based feature space; 289

adding more features (i.e., PCA modes) only increases this separability in the 290

higher-dimensional feature space for each moth as we have observed in our past 291

work [16]; for more details, we advise the interested reader to refer to [16] where the 292

feature extraction procedure was first proposed and its performance thoroughly 293

analyzed. 294

5.2 Scenarios and Methodology 295

The moth population set is M = {1, . . . , 9}. We evaluate the performance of the 296

cross-subject neural decoder in the following scenarios: 297

• Scenario I (Fig. 4a). The destination and source sets are MD = {m} and 298

MS = M\{m}, respectively. That is, we select a single subject m ∈ M as the 299

destination and map the features of all remaining subjects i ≠ m onto the feature 300

space of the destination subject m. The obtained representation is then decoded 301

using a linear classifier trained on subject m data. 302

• Scenario II (Fig. 4b). The source and destination index sets are MS = {m} and 303

MD = M\{m}, respectively. In other words, we select a single subject m ∈ M as 304

the source and map the corresponding feature vector onto the feature spaces of all 305

remaining subjects j ̸= m. Similarly, as in scenario I above, the obtained 306

representations of the source feature vector are subsequently decoded using the 307

subject-specific linear classifiers trained on the destination subjects j ̸= m 308

individually. 309

(a) Scenario I (b) Scenario II

Fig 4. Evaluation scenarios. (a) One subject is the destination, all other subjects are
sources. (b) One subject is the source, all other subjects are destinations.

In both of these scenarios, we evaluate the performance of the destination classifier 310

(trained purely on destination data) on the transferred source features through an RBM 311

model with both standard contrastive divergence minimization and Fisher divergence 312

minimization; we use RBM-CD and RBM-FD to denote these two RBM models, with 313

CD standing for contrastive divergence (see Section 4.2.5) and FD standing for Fisher 314

divergence (see Section 4.2.6). We compare the performance with two benchmarks: 315
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1. subject-specific neural decoding, when the classifier is trained and tested on 316

purely destination data. Equivalently, the data used to train the classifier and the 317

test data respectively come from the same individual subject. In this case, the 318

performance of the neural decoder may be thought of as an upper bound because 319

it represents the best-case scenario where the classifier has access to the most 320

relevant information about feature patterns of the test data. 321

2. cross-subject neural decoding with no transfer, when the source data is directly 322

decoded using the destination neural decoder without transferring the source data 323

into destination feature space. As we discussed in Section 3, in this case, the 324

performance of the neural decoder is usually close to a random guess, since the 325

neural decoder does not take into account the differences between neural activity 326

patterns between the test (source) and the train (destination) data. 327

Fig 5. Organization of source and destination training data sets.

The training and testing data for the source and destination data sets in both scenarios 328

are formed by splitting the original data sets of each moth into training and testing 329

data subsets randomly according to ω ∈ (0, 1), which denotes the ratio between the 330

number of training samples and the total number of trials. To characterize the 331

performance of the cross-subject neural decoder statistically, the random train/test data 332

splitting procedure is repeated 100 times; the entire model including the RBM is then 333

re-trained using the new training data, and the test performance is recorded. 334

In cross-subject mapping, we are aiming to find a destination space feature 335

representation of the source feature vector; the mapping should be consistent with the 336

task that the source features are encoding. In other words, the mapping should be such 337

that the transferred representation of the source feature vector should be in the region 338

of the destination feature space that corresponds to the task that the source is 339

performing, as illustrated in the top row in Fig. 5. In essence, when sampling from the 340

joint pdf p(x,h), we wish to sample from a stimulus-dependent distribution and this 341
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should be guided by the task information the source feature vector is encoding. Hence, 342

the trials in the training data set should be organized such that there is an input-output 343

correspondence with respect to the stimulus. As we are unable to establish 344

correspondence between individual training trials, we assign the correspondences at 345

random. The procedure is schematically depicted in the bottom row in Fig. 5. Namely, 346

for each source feature vector from the training set, we randomly choose a destination 347

feature vector from the same stimulus class and declare the pair to be an input-output 348

pair. 349

5.3 Results 350

We used the following values for the free parameters:

Table 1. Experimental Parameters.

Parameter Value

Data split ratio (ω) 0.5
Wing stroke cut-off (τ) 60 ms
Kernel bandwidth (σ) 2.5 ms
Number of principal modes (Dm = P ) 10
Number of units in hidden layer (H) 15
Optimizer for training RBM model Adam [21]
Learning rate 0.005
Minibatch size 150
Training epochs 200

351

In both scenarios, we use the Linear Discriminant Analysis (LDA) for classification 352

which we also used in [16] and has shown to perform exceptionally high decoding 353

accuracy. 354

Fig 6. Performance of the cross-subject neural decoder in Scenario I (see Fig. 4a and
Section 5.2 for details).

The results are shown in Figs. 6 and 7. We observe that in both scenarios the 355

performance of the cross-subject neural decoder is bounded between the performances 356

of the two benchmarks, with the performance of the subject-specific neural decoder 357

being the upper bound and the performance of the cross-subject neural decoding with 358

no transfer being the lower bound. The performance of the cross-subject neural decoder 359

being upper-bounded by the performance of the subject-specific neural decoder is 360

intuitively expected. Note that in Fig. 6 the lower bound varies around 0.16, which 361
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Fig 7. Performance of the cross-subject neural decoder in Scenario II (see Fig. 4b and
Section 5.2).
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corresponds to random choice decoding in our case (as there are 6 stimuli in the 362

experiment, see Section 5.1). The performance of the cross-subject neural decoder is 363

similar in Scenario II but we omit to show it in Fig. 7 to avoid clutter. We conclude 364

that the performance of the cross-subject neural decoder without transferring the source 365

features to the destination is very poor, and produces a poor lower bound. The poor 366

decoding performance of the second benchmark when the source test data is directly 367

decoded using a decoder trained on the destination data, without any prior 368

transformation/adaptation of the source data to the destination feature space is also 369

intuitively expected. This can be most easily seen by inspecting Fig. 3 which depicts the 370

feature spaces across the first two modes for each moth. Even though each moth 371

individually exhibits a high degree of class separability (which ultimately results in very 372

reliable subject-specific decoding performance as demonstrated in Fig. 6), there is very 373

little alignment between the geometric distribution of the classes/tasks (i.e., visual 374

conditions) in the space spanned by the first two modes across different moths. In fact, 375

the task-specific representations seem to occupy arbitrary segments of the feature space 376

across the first two dimensions and no discernible pattern can be directly observed; 377

adding even more modes/features which are required to achieve high subject-specific 378

separability, only exacerbate the differences of the feature spaces across moths. As a 379

result, directly decoding any source moth using a neural decoder trained over a different, 380

destination moth results in poor performance as reported in Fig. 6. 381

The role of the RBM is to serve as a non-linear mapping function that takes source 382

features and adapts them to the destination feature space where the decoder was 383

trained, and this effect can be observed in Fig. 8 which shows the distribution of the 384

source test points in Scenario I after applying FD-RBM cross-subject transfer with 385

trained RBM model to the corresponding destination feature space. Note that the test 386

points are the features coming from a diverse set of sources, namely all remaining 387

(eight) moths; hence, the illustrative result shown in Fig. 8, in addition to the decoding 388

results presented in Fig.6, clearly demonstrate that the FD-RBM model has successfully 389

learned a non-linear transformation that takes a task-specific feature representation 390

from an arbitrary source and maps it into the adequate task-specific region of the 391

destination feature space. 392

By comparing the results in Fig. 6 with the results in Fig. 7, we also observe that 393

the performance of the neural decoder in Scenario I outperforms the neural decoders in 394

Scenario II. This is an intuitively expected result, as in Scenario II, the size of the joint 395

destination feature vector xD is M − 1 times larger than the source feature vector xS; 396

that is, in Scenario II we are jointly obtaining the representation of a single source in 8 397

different destination feature spaces. The opposite reasoning applies to Scenario I. Hence, 398

the drop in the performance from Fig. 6 to Fig. 7 is expected. Furthermore, for a given 399

population of subjects indexed in M, we can view these two scenarios as the two 400

extreme cases that put the upper (Scenario I) and lower (Scenario II) bounds on the 401

performance. 402

We also observe that the performance of the cross-subject neural decoder with 403

RBM-FD transfer outperforms the performance of the same cross-subject decoder with 404

RBM-CD transfer. This is an interesting finding, further indicating that in the case of 405

RBMs, the training based on Fisher divergence minimization yields better results in 406

comparison with the more conventional approach based on Maximum Likelihood. This 407

result is also consistent with our findings on popular public datasets such as the MNIST 408

where we used RBM for applications such as compression and reconstruction and where 409

we observed that an RBM trained via Fisher divergence minimization yields 410

higher-quality image reconstructions. In addition to the reliability improvement, we 411

note that training an RBM-FD is less computationally demanding as opposed to 412

RBM-CD which requires Gibbs sampling even during training to obtain estimates for 413
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Fig 8. Distribution of source test points (full squares) in the feature spaces of the
destination moths (represented by the transparent confidence ellipses from Fig. 3) after
mapping them using trained FD-RBM model. The mapping corresponds to Scenario I
and, as in Fig. 3, only the first two modes of the feature space are shown.
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the gradients. However, it should be noted that while the RBM-FD model in general 414

tends to outperform the RBM-CD model, the behavior is ultimately determined by the 415

values of the free parameters, and in the case of the parameters we have selected (listed 416

in the beginning of this section), the above observations are valid. 417

6 Conclusion and Future Work 418

The design of reliable, robust, and low-cost solutions for cross-subject mapping is a 419

challenging problem in neuroscience. In this paper, we proposed a general framework for 420

learning the joint distribution of source and destination feature representations across a 421

set of subjects using the undirected graphical model and RBM which we evaluated on a 422

neural decoding task and experimental data collected from nine hawk moths during a 423

comprehensive motor program where the moths are subject to a total of six visual 424

stimuli. We also considered an alternative training method for the RBM that minimizes 425

the Fisher divergence and allows the gradient to be computed in closed form, alleviating 426

the need for Gibbs sampling during training. The results verified the viability of the 427

solution. These approaches show promise in generalizing features of complex neural 428

datasets across individuals, tuning neural interfaces to subject-specific features, and 429

leveraging data across multiple subjects when experiments are limited in time or 430

completeness. 431

Several extensions of the presented approach are possible and are currently part of 432

our ongoing work. First, the derivation of the conditional distribution of the destination 433

features given the source features from the joint distribution represented by an RBM is 434

a direction worthwhile pursuing as it relates to the cross-subject mapping problem and 435

would avoid the issues related to noise-like initialization in the approach presented in 436

this paper. Second, learning subject-invariant RBM models that can also predict feature 437

representations of unseen source subjects is a key direction that should be pursued since 438

it is directly related to the generalization capability of the approach. Finally, we are 439

also investigating the application of the model to other neural signal modalities, 440

including non-invasive modalities such as EEG signals. 441
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