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Abstract—Spike train decoding has been considered as one
of the grand challenges in reverse-engineering neural control
systems. This paper presents a novel relative-time kernel design
that considers not only single spike train patterns, but also the
relative spike timing information by comparing every pair of
correlated spike trains across the population. The new relative-
time-kernel-based spike train decoding method proposed in this
paper allows us to uncover the precise nonlinear mapping from
the spike trains of ten primary flight muscles to the resulting
aerodynamic forces and torques collected in hawk moth flower
tracking experiments. To benchmark the novel relative-time
kernel design, we compare the prediction performance of our
new relative-time-kernel-based spike train decoder with that
of traditional instantaneous-kernel-based and rate-coding-based
decoders. Our new relative-time-kernel-based decoder captures
the data variance better and predicts the aerodynamic forces
and torques more accurately than the benchmark decoders.
Furthermore, compared to force prediction, our relative-time
kernel has a much higher percentage improvement over the
instantaneous kernel in torque prediction.

Index Terms—neural decoding, regression, kernel, spike train

I. INTRODUCTION

Small insects, such as cockroaches and hawk moths, can
integrate information from multiple sensory modalities, and
make rapid and coherent behavioral decisions in complex
environments [1], [2]. However, most existing artificial in-
telligence systems rely on rich but separate modalities of
sensory feedback. Typically, they are poorly integrated and
predetermined for particular tasks, such as object recognition,
action recognition and target tracking [3]–[5]. Therefore, there
is a massive untapped opportunity for us to reverse engineer
the hawk moth’s neural control system that bridges sensory
perception and motor control of its flapping flight. However,
neural decoding has been considered as one of the biggest

challenges in reverse-engineering the neuromorphic perception
and control systems in nature [6], [7], because sensory signals
are encoded in low-dimensional neural activities [8], and
sparsity and compressive sensing are essential for biological
decision-making processes [9]. To extract nonlinear dynamic
control strategies from biological neural systems and approx-
imate them via spiking neural network (SNN), we need to
decode useful continuous-time signals from spike trains, which
can then be used for downstream control inputs [10], [11].

Spike train decoding is a mathematical problem of infer-
ring external stimuli or biological control signals encoded
in sequences of spike timings [12], [13]. It is fundamental
and essential for determining the complete biological neural
control system that bridges the sparse sensory codes and motor
decoding strategy [14], [15]. However, there is still a debate
in the neuroscience community on the precise spike train
decoding approaches biological systems use. The traditional
rate coding method based on average firing rate has been
predominant for long [16], [17]. However, it assumes that
most information is encoded in average firing rate, and does
not take into account any precise spike timing information
[18]. As demonstrated in [19], [20], spike timing encodes more
information of the hawk moth’s turning behavior than spike
count in tethered flight, and is essential for the coordination
of muscle pairs. In addition to the rate coding method, more
recent studies have identified and supported the temporal
coding, which employs temporal features, such as time to the
first spike and phase of firing, to uncover the mapping from
temporal patterns of spikes to continuous representations [21]–
[23]. However, these traditional approaches do not actually
capture the extra information encoded in the relative spike
timings between correlated muscles.

In recent years, kernel tricks have been borrowed from the



machine learning community and widely used by neurosci-
entists to represent spike trains as objects in Hilbert space,
and decode the motor signals using well-developed regression
methods [24]–[26]. In [24], the author proposed a reproducing
kernel Hilbert space (RKHS) framework that uses an instan-
taneous kernel to determine similarities between single spike
trains directly. This RKHS framework can be formulated by
many types of spike train kernel designs, including count
kernels [25], linear functional kernels [27], and nonlinear
functional kernels [28]. Gaussian process regression, which
assumes a prior Gaussian distribution with its covariance given
by the kernel, has also been widely used for spike train
decoding [29], [30]. One distinct disadvantage of these kernel-
based spike train decoding methods is that they only capture
the difference of either spike counts or exact spike timings
between spike trains from different muscles, and will not
perform well especially in our case when the muscles actuating
the hawk moth’s wings correlate with each other. Relative
spike timing information is quite essential for uncovering the
whole biological motor program, including the correlation
between muscle pairs [19], [31]. In this paper, we aim to
discover the neural control policy for the flight of a tethered
hawk moth visually tracking a moving robotic flower as
shown in Fig. 1. Unlike the traditional kernel-based approaches
summarized above, the new RKHS framework proposed in
this paper is based on the kernel evaluation between every
pair of correlated spike trains across the entire flight muscle
population. The novelty of this new relative-time kernel design
is that it allows to take into account both single spike train
patterns and relative spike timing information among multiple
neurons for the first time.

Fig. 1. Picture of a hawk moth visually tracking a moving robotic flower
while tethered to a custom 6-axis F/T transducer.

This paper is organized as follows. Section II first in-
troduces how we collect the spike train and control signal
data in flower tracking experiments. The spike train decoding
problem is then formulated in this section, along with its
basic assumptions. The new relative-time kernel design that
considers the extra information encoded in relative spike
timings among multiple neurons is presented in Section III. In
Section IV, the performance of the relative-time-kernel-based
spike train decoder is demonstrated by comparing to that of
benchmark instantaneous-kernel-based and rate-coding-based

decoders. Finally, the conclusion and future work are discussed
in Section V.

II. PROBLEM FORMULATION

Given a hawk moth visually tracking a moving robotic
flower while tethered to a custom 6-axis F/T transducer in
Fig. 1, we aim to uncover the precise mapping from the
recorded spike trains of the 10 primary muscles actuating the
moth wings to the resulting aerodynamic forces and torques.
The aerodynamic forces and torques, y ∈ R6, are collected
at times t1, t2, · · · , tn, and then arranged into a matrix,
Y ∈ Rn×6, such that

Y = [y(t1) y(t2) · · · y(tn)]T (1)

To map a spike train containing a sequence of spike times
to a continuous variable that can be used for regression,
we represent the sequence of spike times as a binned spike
train that is changing over time as an user-defined sliding
window moves [32]–[34]. The larger the bin size is, the more
information will be stored in the binned spike trains. But the
regression algorithm will also become more computationally
expensive. In this paper, the spike times ts within a certain
bin size T before time t are stored in a binned spike train as
a set,

X(t) = {ts ∈ (t− T, t]}, s ∈ N∗ (2)

Similar to the aerodynamic forces and torques in (1), the
binned spike trains of 10 primary flight muscles are then
collected at times t1, t2, · · · , tn, and arranged into a matrix,
X ∈ Rn×10, such that

X =


x(t1)
x(t2)

...
x(tn)

 =


X1(t1) X2(t1) · · · X10(t1)
X1(t2) X2(t2) · · · X10(t2)

...
...

. . .
...

X1(tn) X2(tn) · · · X10(tn)

 (3)

where x(t) ∈ R10 denotes the output signal vector containing
10 binned spike trains at any given time t. In this paper, we
consider the problem of determining the decoding function,
f∗, that minimizes the difference between the predicted and
true aerodynamic forces and torques,

f∗ = argmin
f∈H

{
n∑

i=1

∥∥y(ti)− f [X1(ti), X
2(ti), · · · , X10(ti)]

∥∥2
2

+ λ∥f∥2H}
(4)

where H denotes the Hilbert space, X1, X2, · · · , and X10 rep-
resent the binned spike trains corresponding with 10 primary
muscles actuating the moth wings, and λ is a tuning parameter
for penalized regression.

III. RELATIVE-TIME KERNEL DESIGN

In general, a reproducing kernel Hilbert space (RKHS)
can be defined by a symmetric and positive definite Mercer
kernel. The input sample, X , is first mapped to the RKHS as
a function, K(X, ·), obtained by fixing the first coordinate.



Then, the inner product of two functions in the RKHS can be
computed by a kernel evaluation in the input space,

⟨X|X ′⟩H = K(X,X ′) (5)

which brings computational simplicity. In our particular spike
train decoding problem, given a set of binned spike trains,
Xi = {tik : k = 1, 2, · · · ,mi}, i = 1, 2, · · · , 10, from 10
different primary muscles respectively, every pair of binned
spike trains, Xi and Xj , can be represented as a sum of two-
dimensional Dirac delta functions,

xij(σ, τ) =
∑
ki,kj

δ(σ − tiki
, τ − tjkj

) (6)

which can then be transformed into a continuous multivariate
function via convolution with a filter h,

fij(σ, τ) = xij ∗ h =
∑
ki,kj

h(σ − tiki
, τ − tjkj

) (7)

where i and j denote two different muscles, and k represents
spike indices. In this paper, we choose a two-dimensional
Gaussian filter h for the convolution above,

h(v) = exp(−1

2
vTΣ−1v) (8)

where v denotes the mean vector, and Σ denotes the co-
variance matrix. For illustration purposes, Fig. 2 shows three
binned spike trains, Xi = {tik : k = 1, 2, · · · ,mi}, i = 1, 2, 3,
collected in our flower tracking experiment. If we take two
binned spike trains, X1 and X3, for example, the continuous
multivariate function containing the information of relative
spike times between these two spike trains can be represented
by a two-dimensional Gaussian distribution as shown in Fig. 3.

Fig. 2. An example of three binned spike trains containing the information
of exact spike times.

Fig. 3. An example of the multivariate Gaussian distribution containing the
information of relative spike times between spike trains, X1 and X3.

For RKHS regression, the kernel evaluation between two
pairs of spike trains can be defined as,

K(Xij , Xij′) = ⟨fij , f ′
ij⟩ =

∫ T

0

∫ T

0

fij(σ, τ)f
′
ij(σ, τ)dσdτ

(9)

where Xij denotes the two-dimensional Gaussian distribution
determined by the pair of spike trains, Xi and Xj , the
superscript (·)′ refers to a different pair of spike trains, and T
represents the bin size. Then, the final kernel function can be
given by,

K(x,x′) =
∑
i,j

K(Xij , Xij′) (10)

Based on the representer theorem in [35], the prediction of
the decoding function, f̂ , evaluated at binned spike trains, Z ∈
Rl×10, from 10 muscles in the test data set can be obtained
by taking linear combinations of the kernel,

f̂(Z) = K(Z,X)α (11)

where X ∈ Rn×10 denotes binned spike trains used for
training, Krs = K [z(tr),x(ts)] ∈ Rl×n is the Gram matrix,
and the coefficients, α ∈ Rn×6, are given by,

α = [K(X,X) + σ2
nI]

−1Y (12)

where Krs = K [x(tr),x(ts)] ∈ Rn×n is the Gram matrix, σ2
n

is the observation noise variance, and Y ∈ Rn×6 represents
the corresponding aerodynamic forces and torques used for
training. Then, we can use this RKHS regression approach
to predict the output aerodynamic forces and moments at
an arbitrary time. The prediction results are shown in the
following section.

IV. REGRESSION RESULTS

In our experiment, the hawk moth visually tracks a robotic
flower that oscillates with a 1-Hz sinusoidal trajectory, and
its wing stroke is approximately 50 ms. Consequently, the
size of the sliding window for spike train binning is chosen
to be 50 ms. To capture the stroke-to-stroke modulation, the
training data used for RKHS regression should cover at least
one second. Therefore, given that the sampling rate of moth



experiments is 104 Hz, we need to use 105 binned spike trains
from 10 primary muscles and 6 × 104 output aerodynamic
forces and torques collected during the hawk moth’s flapping
flight for training. Given that the aerodynamic forces and
torques do not change dramatically, we decrease the resolution
of training data to reduce the computational complexity by
collecting the training data every 20 time steps. Then, we
obtain a sequence of binned spike trains from 10 primary
muscles at times t1, t2, · · · , t500, arrange them into a matrix,
X ∈ R500×10, and correspondingly collect the output forces
and torques, Y ∈ R500×6, within one second as the training
data for RKHS regression. Finally, we test our new regression-
based decoder on a test data set, Z ∈ R500×10, within an
arbitrary wing stroke.

To benchmark our new kernel design, we compare the per-
formance of our relative-timing-kernel-based regression with
that of both the traditional instantaneous-kernel-based regres-
sion [29] and rate coding [16], [17]. Fig. 4 shows the aero-
dynamic forces and torques predicted by relative-time-kernel-
based, instantaneous-kernel-based and rate-coding-based re-
gressions along with the true values measured in the moth
experiment. It can be seen from the relative-time-kernel-based
testing results that the aerodynamic forces and torques have
been predicted accurately within a permissible range of error.
The instantaneous kernel directly determines similarities be-
tween single spike trains, and does not capture relative timing
information [24], [25]. The rate coding method is based on the
assumption that average firing rate encodes most information.
Unlike these two traditional methods, our relative-time kernel
compares every pair of correlated spike trains across the
population, and considers the extra information encoded in
relative spike times among different spike trains. As shown in
Fig. 4, both the relative-time-kernel-based and instantaneous-
kernel-based decoders outperform the rate-coding-based one
significantly. More importantly, the relative-time-kernel-based
decoder can capture small changes in forces and moments
better than the other two traditional methods, particularly for
torque components, Tx and Ty .

In Fig. 5, we compare the absolute prediction errors
of relative-time-kernel-based, instantaneous-kernel-based and
rate-coding-based regressions. The absolute prediction error,
e, is defined as,

e = |y − ŷ| (13)

where y denotes the true value, and ŷ denotes the predicted
value. It can be observed that the relative-time-kernel-based
decoder can predict the aerodynamic forces and torques more
accurately than the other two traditional decoders, especially
for the torque prediction. To determine how well the decoder
captures the variance in data, we use the standard deviation
of the absolute prediction error, σe, and R-squared score, R2.
The standard deviation of the absolute error, σe, is given by,

σe =

√√√√ n∑
i=1

(ei − ē)2 (14)

Fig. 4. Comparison of relative-time-kernel-based, instantaneous-kernel-based
and rate-coding-based predictions of aerodynamic forces and torques.

where ē = 1
n

n∑
i=1

ei. The lower the standard deviation of

the absolute error is, the better the model captures the data
variance. The R-squared score, R2, is given by,

R2(y, ŷ) = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
(15)

where ȳ = 1
n

n∑
i=1

yi. The higher the R-squared score is, the bet-

ter the model captures the data variance. In Table I, these two
performance metrics are used to quantitatively determine the
accuracy of relative-time-kernel-based, instantaneous-kernel-
based and rate-coding-based regressions. The percentage im-
provement of relative-time kernel over instantaneous kernel is
listed in the yellow shaded area. It can be observed that the
standard deviation of the absolute error of relative-time-kernel-
based regression is smaller than that of instantaneous-kernel-
based one except for the force component, Fz . Furthermore,
the R-squared scores of relative-time-kernel-based regression
for the predictions of Fx, Fy , Tx, Ty and Tz are all higher than
that of instantaneous-kernel-based regression. Compared to
force prediction, our proposed relative-time kernel has a much
higher percentage improvement over the instantaneous kernel
in torque prediction. Therefore, having taken the extra infor-



mation of relative spike times into account, the relative-time-
kernel-based decoder captures the variance in the aerodynamic
forces and torques better than the traditional instantaneous-
kernel-based and rate-coding-based decoders.

Fig. 5. Comparison of the absolute prediction errors of the relative-time-
kernel-based, instantaneous-kernel-based and rate-coding-based regressions.

TABLE I
REGRESSION PERFORMANCE COMPARISON.

Fx Fy Fz

Relative-time 0.0054 0.0071 0.0042
Instantaneous 0.0056 0.0076 0.0040
Rate coding 0.0066 0.0192 0.0093σe ↓

% Improvement 3.6% 6.6% -5.0%
Tx Ty Tz

Relative-time 0.4350 0.3542 0.0397
Instantaneous 0.6193 0.4535 0.0558
Rate coding 0.9466 0.5545 0.0754σe ↓

% Improvement 29.8% 21.9% 28.9%
Fx Fy Fz

Relative-time 0.6477 0.9203 0.9133
Instantaneous 0.6369 0.9037 0.9477
Rate coding 0.4593 0.5639 0.7039R2 ↑

% Improvement 1.7% 1.8% -3.6%
Tx Ty Tz

Relative-time 0.8869 0.6609 0.8555
Instantaneous 0.7151 0.4345 0.7133
Rate coding 0.5244 0.1752 0.4626R2 ↑

% Improvement 24.0% 52.1% 19.9%

V. CONCLUSION

This paper presents a novel regression-based spike train
decoding method that uncovers the precise mapping from the
spike trains of ten primary flight muscles to the resulting
aerodynamic forces and torques for the flight of a hawk moth
visually tracking a robotic flower. The new relative-time kernel
design proposed in this paper considers the extra relative spike
timing information among different spike trains by comparing
every pair of correlated spike trains across the flight muscle
population. The relative-time-kernel-based decoder captures
the data variance better and predicts the aerodynamic forces
and torques more accurately than benchmark instantaneous-
kernel-based and rate-coding-based decoders. Furthermore,
compared to force prediction, the proposed relative-time kernel
has a much higher percentage improvement over the instanta-
neous kernel in torque prediction. Regarding the future work
beyond the relative-time kernel design approach described
in this paper, we will use this new regression-based spike
train decoder to train the hawk moth’s spiking neural network
(SNN) model.
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N. R. Franks, “On optimal decision-making in brains and social insect
colonies,” Journal of the Royal Society Interface, vol. 6, no. 40, pp.
1065–1074, 2009.

[2] A. B. Barron, K. N. Gurney, L. F. Meah, E. Vasilaki, and J. A.
Marshall, “Decision-making and action selection in insects: inspiration
from vertebrate-based theories,” Frontiers in Behavioral Neuroscience,
vol. 9, p. 216, 2015.

[3] M. Steinberg, J. Stack, and T. Paluszkiewicz, “Long duration auton-
omy for maritime systems: Challenges and opportunities,” Autonomous
Robots, vol. 40, no. 7, pp. 1119–1122, 2016.

[4] K. Ebadi, Y. Chang, M. Palieri, A. Stephens, A. Hatteland, E. Heiden,
A. Thakur, N. Funabiki, B. Morrell, S. Wood et al., “Lamp: Large-scale
autonomous mapping and positioning for exploration of perceptually-
degraded subterranean environments,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2020, pp. 80–86.

[5] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.
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